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Abstract

We show that labor training requirements for high-skilled occupations increased in

the U.S. from 2006 to 2019. These greater training requirements reduce the extent to

which workers displaced from shrinking occupations can relocate to expanding (high-

skilled) occupations, thus affecting both the equilibrium occupational structure and

the unemployment level. We build a quantitative model in which labor is displaced by

task-replacing technological change embodied in robots (“tasks shock”) and the extent

of occupational switching depends on the destination occupations’ training require-

ments. We find that: (i) task-displacing technological change increases steady-state

unemployment, but it reduces unemployment along the transition; (ii) in contrast, a

comparable shock to capital embodied technological change produces larger unemploy-

ment rates with respect to the tasks shock, both in the transition and the steady state;

and (iii) greater training requirements in high-skilled occupations increase steady-state

unemployment and affects the occupational structure along the transition, but their

effect depends on the size of the technological shock.
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1 Introduction

In recent decades, the U.S. occupational structure changed substantially, with high-skilled

occupations increasing their employment shares relative to middle- and low-skilled roles.

While a large part of the literature investigates these long-run patterns, less attention has

been placed on the short-run dynamics of occupational composition. In this paper, we

document that, while the demand for high-skilled labor has surged, the training requirements

needed to access these occupations also increased. In contrast, training requirements for

low- and middle-skilled occupations remained relatively constant. Using the Occupational

Information Network (O*NET) and the CENSUS IPUMS data, we calculate that, due to the

growth of high-skilled occupations, the average training time needed to perform the average

occupation in the U.S. economy increased from 6.29 years in 2006 to 7.04 years in 2019.

Such changes can potentially increase aggregate unemployment by affecting the long-run

occupational structure, as well as hindering the short-run occupational mobility of displaced

workers by making their transition into expanding high-skilled occupations longer.

Barriers to occupational switching are even more relevant in periods in which workers

are largely displaced from some occupations. Recent technology advancements suggest Ar-

tificial Intelligence (AI) and robotics could be rapidly adopted, reshaping the occupational

structure of the workforce in advanced economies.1 Robots can already potentially perform

a wide range of tasks in various occupations with limited human intervention, including

welding, painting and packaging.2 Thus, while labor-replacing technologies are rapidly and

extensively adopted, barriers to occupational mobility increase. In this paper, we investigate

how the interaction between these two factors can lead to the emergence of technological

unemployment.

To study the emergence of technological unemployment in an environment in which (i)

the arrival of technology can displace workers in certain occupations and (ii) occupational

mobility is hindered by training barriers, we build and calibrate a dynamic multi-occupation

growth model. We model occupations as productive units which comprise a set of tasks. In

a similar spirit to the growing literature on task-based technological change, we assume that

current technology allows broadly defined capital (i.e., robots) to perform a subset of existing

tasks and, in those tasks, labor and capital are perfect substitutes. As robots are cheaper

1Morris (2023) in a BBC news article reports that the Ocado Technology warehouse in Luton (UK) has
44 robotic arms, which currently account for 15% of the products handled in the facility, about 400,000 items
per week. The rest are handled by workers. In two or three years, Ocado expects robots will handle 70% of
the products.

2While conceptually the introduction of a robot or AI is no different from the introduction of textile
machinery in the 19th century, their speed of improvement and adoption is substantially faster, as they can
be easily re-programmed to perform new sets of tasks.
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than labor in equilibrium, they perform all the tasks for which a technology exists, while

labor is left performing the remaining tasks. Technological change in the model occurs as an

exogenous increase in the tasks that can be performed by robots, and such an increase can be

heterogeneous across occupations. When technological change occurs within an occupation,

ceteris paribus, the marginal product of labor declines and workers tend to flow out of that

occupation.3

On the workers side, we assume a household is composed of a unit measure of agents.

Each agent has instantaneous utility in consumption and labor time that they provide to

the household, where all agents’ utilities are equally weighted. In each period, individual

agents work in one of the J market occupations or they are unemployed, while the household

owns the stock of robots in the economy and makes investment decisions. There is a unique

good produced in the economy that can be used for consumption or investment (in robots)

purposes.

We assume that workers laid off from an occupation must be trained before moving to

a new occupation. Thus, given the sector k in which an agent works at time t, which is

determined at t− 1, the amount of labor time that the agent provides is optimally split into

two components: one which is sold by the household in the market in exchange for a wage

and another which is used by the household to train new workers in occupation k for the

next period t+ 1.

To model the training process, and the fact that this can take time, we consider that the

labor force in one occupation at time t is given by workers already in that occupation at t−1,

less some exogenous separations, plus newly trained workers. The latter are drawn from the

unemployment pool through a occupation specific training function that uses, as inputs, the

unemployed and the amount of time that workers in the destination occupation k use to

train new workers. Thus, the household chooses in each period t: (1) consumption, which is

equal for all agents in equilibrium; (2) the work effort of each type of agent in occupation k;

(3) how much of that effort goes into training instead of production; (4) the stock of robots

at t+ 1 ; and (5) the size of occupations at t+ 1.

The chain of events is as follows. There is a one time, zero probability exogenous (unan-

ticipated or MIT) shock that increases the number of tasks that robots can perform in a

specific occupation. This induces the household to reallocate part of the labor force from

that occupation. However, reallocating labor is costly, as it requires that part of employed

workers’ labor time is devoted to training new workers for that occupation.

We use variation across U.S. Metropolitan Statistical Areas (MSA) and time to esti-

3We use the terms capital, machine and robots interchangeably in the paper. However, when we measure
technological change, we specifically refer to robots’ capabilities in substituting labor in specific tasks.
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mate the parameter governing the training barriers in our training function. The estimation

suggests that no training is required to transition to a low-skilled occupation, while the

required training for high-skilled occupations is substantially larger than for middle-skilled

occupations. We then calibrate the rest of the parameters such that the model replicates the

occupational structure of the U.S. in 2006.

To identify the technological shock we use two methods. Using a natural language pro-

cessing (NLP) algorithm, we classify which intermediate work activities (IWA) in O*NET

can be potentially performed by robots within each occupation by using data from the In-

ternational Federation of Robotics (IFR).4 Alternatively, we use the mapping of robots to

task from Teubert, Rendall, and Dowe (2024) who rely on Large Language Models (LLMs)

to create a match based on IFR applications. These maps allow us to determine the number

of IWAs that can be performed by robots.

In both cases we use CPS IPUMS data to aggregate at a three occupations classification

level (high-, middle- and low-skilled) and we compute the ratio of these IWAs over the total

number of IWAs by occupation. Given the small relative stock of robots with respect to

other types of capital in the economy, we interpret this mapping as providing the set of

IWAs for which a technology already exists to perform certain tasks, but that has not yet

been adopted on a large scale. This gives us the size of the shock and the future state of the

economy.5

We report three main sets of results. First, the shocks to the number of tasks performed

by robots increase steady state unemployment, but reduce unemployment in the initial part

of the transition. The main intuition for this result is that for shrinking occupations, the

household has no incentive to speed up the transition. This is because workers attached to

these occupations are valuable as they are productive assets. On the other hand, to speed-

up the transition, the household increases training in the expanding occupations, which

leads to a fall in unemployment as the unemployed are trained and move into the growing

occupation. However, training drains resources from productive activities. As a result,

flows out of shrinking occupations and into expanding ones are optimally balanced by the

household and unemployment then rises only slowly towards the new steady state.

4IWA are broad occupational tasks defined using a common standard across occupations. There are a
total of 332 unique IWAs in O*NET. Unlike IWAs, tasks in O*NET are mostly unique to each occupation
with virtually no overlap across occupations.

5One could argue that, given that these technologies already exist, the workers could forecast their
adoption and react to this expectation. In the context of our model, we assume neither the household nor
workers have such knowledge. Alternatively, one can assume that these agents cannot forecast when the new
technology will be adopted and so they still take no action. Our experiment can also be viewed as the arrival
of a technological revolution as in Caselli (1999). See the related literature section below for a discussion on
this point.
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Second, we compare the tasks shock to a more standard shock to robots’ productivity

(capital embodied technological change), keeping the final steady state output fixed across

the two experiments. We find that, while the tasks shock decreases unemployment in the

first part of the transition, the productivity shock does not. With the productivity shock,

the stock of robots increases less than with the task shock and labor reallocation across

occupations is smaller. Real wages, instead, increase more with the productivity shock.

Consequently, time spent in training increases less in the high-skilled occupation, which is

the one receiving unemployed workers along the transition. As a consequence, there is an

increase in the unemployment rate along the transition and in the new steady state. This

result highlights that, when training time is an input in the reallocation of workers, labor

reallocation can be hindered as the technological shock can raise real wages.

Third, we experiment with what happens when the task shock occurs simultaneously to a

shock in the training requirements of high-skilled occupations of the same size as the one we

estimate in the data between 2006 and 2019.6 Greater training requirements make unemploy-

ment increase along the transition, rather than decrease as in the benchmark experiment. In

addition, steady state unemployment is larger than in the benchmark case. This is because

increasing training requirements in high-skilled occupations create a larger barrier to entry

into this type of occupation, reducing its size along the transition and in the steady state.

Thus, in this case, additional unemployment is not created because workers flow from low-

and middle-skilled occupations to high-skilled ones, but because the increase in training time

to high-skilled occupations is not enough to offset the flow out of low- and middle-skilled

occupations. This result highlights the importance of training for the occupational structure.

However, if the shock to tasks is very large, the dynamics of unemployment are similar to

the benchmark case without a shock to training. This is because the gains of moving agents

to the high-skilled occupations are large despite the increase in training, noting that it is

optimal to have a substantial increase in training time in high-skilled occupations.

Related Literature

This paper is linked to two main strands of the literature related to (i) task based techno-

logical change and (ii) occupational switching and the costs involved in the process.

We follow the recent literature that exploits a task based approach to technological

change. This approach has gained popularity in the last two decades due to its ability

to shed light on the evolution of the occupational structure (Autor, Levy, and Murnane,

2003, Autor and Dorn, 2013), something that the canonical model of skill-biased techno-

6We stop in 2019 due to the COVID pandemic.
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logical change in its basic version cannot do (Acemoglu and Autor, 2011).7 Recently, this

approach has been used in macroeconomic settings to model technological change due to

the arrival of robots. Acemoglu and Restrepo (2020) estimate the equilibrium impact of in-

troducing robots in local labor market, finding negative effects in terms of employment and

wages. Acemoglu and Restrepo (2022b) focus on wage inequality, finding that task displace-

ment, due to the introduction of new technologies that can perform those tasks, can explain

much of the changes in education wage differentials between 1980 and 2016. Acemoglu and

Restrepo (2022a) find that automation is associated with aging of the working population,

because the latter creates a shortage of middle-aged workers who perform manual tasks.

Moll, Rachel, and Restrepo (2022) discuss how automation can increase inequality. The

benefits of technological change accrue not only to high-skilled workers, who see an increase

in their productivity, but also to owners of capital in the form of higher capital incomes.

Concurrently, automation can lead to stagnant wages, and so stagnant incomes at the bot-

tom of the distribution of assets, thus widening inequality in both incomes and assets over

the population. These contributions suggest that the task approach to technological change

displays factual predictions on the allocation of labor across occupations on one side, and on

the wage distribution on the other side. In this paper, we exploit this type of technological

change to study how the reallocation of labor across occupations after a technology shock

can generate technological unemployment. In terms of the quantitative exercise, we study

the response of the economy to a zero-probability unexpected (MIT) exogenous shock to the

number of tasks that robots can perform in an occupation, which can be interpreted as a

technological revolution in the spirit of Caselli (1999). In his model, new technologies that

arrive exogenously require workers to acquire more skills to operate them with respect to

previous ones. In our model the technological shock in one type of occupation (e.g., middle-

skilled) can trigger a reallocation of workers to another type of occupation (e.g., high-skilled),

for which they require more training.8

The second strand of the literature we relate to is that of cross-occupational mobility

and the costs associated to it. Phelan and Trejos (2000) document that, when workers are

forced to switch sector due to demand or supply shocks, the unemployment rate increases and

the transition to the new steady state can be long. A recent paper by Carrillo-Tudela and

Visschers (2023) documents that gross occupational mobility at reemployment is high and

increases with unemployment duration. Occupations with mobility rates above 40% repre-

7See Cerina, Moro, and Rendall (2021) for a model of skill-biased technological change that can account
for the evolution of the occupational structure when a gender dimension and home production are introduced.

8A similar strategy is also adopted in Marimon and Zilibotti (1999), who study the effects of an MIT
skill-biased technological innovation on search and matching labor markets that differ in the size of the
unemployment benefits.
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sent more than 80% of employment-unemployment-employment spells. Occupational movers

have, on average, longer spells than stayers, thus, contributing substantially to the increase

in aggregate unemployment. We build on these findings by focusing on occupational switch-

ers and the switching costs involved, measuring training requirements of each occupation.

Our theory rests on the assumption that longer unemployment spells of switchers are due

to different training requirements between the origin and the destination occupation. Using

CPS data we provide evidence that the length of unemployment spells is indeed positively

correlated with the training index of the destination occupation. Given this observation, our

assumption on mobility frictions is different from another modeling strategy in the litera-

ture that assumes that workers lose part of their human capital when switching occupations

(Dvorkin and Monge-Naranjo, 2019). In our theory, the requirements needed to perform an

occupation must be acquired before entering the occupation, such that the average length of

unemployment spells depends on the training requirements of the destination occupation.

Finally, in our theory the degree of substitutability between capital and labor within

occupations plays an important role. This determines the extent to which labor is substituted

with capital when technological change affects a specific occupation, and so how much labor

is reallocated from that occupation in equilibrium. We follow the methodology in Caunedo,

Jaume, and Keller (2023) to estimate these elasticities for our occupational classification.

The rest of the paper is organized as follows: Section 2 discusses the evolution of the

training index in the U.S.; Section 3 describes the model; Section 4 details the calibration

and estimation; Section 5 presents the results; and Section 6 concludes.

2 Training Index

In this section we report the evidence on the training index and its time evolution in the

U.S. We use data from the O*NET, CPS and Census databases. From the O*NET database

we use the Education, Training and Experience file, which contains data associated with

the level of (i) education, (ii) work experience, (iii) on the job training and (iv) on site or

in plant training for each occupation.9 The levels of each category are already classified in

terms of months for work experience, job training and on site training. For education, we

have educational attainment, which we convert into months of education above 12 years (a

typical high-school degree). For each level within each of the four categories, we have the

fraction of workers associated to it. We then start by estimating the time associated with

each category in each occupation by using percentage frequency data. Take education for

instance. For each year t and for each O*NET occupation code classification j we have that

9In Appendix A, we explain the rationale behind using all these elements to construct the training index.
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a fraction pi,j,t of workers performing the occupation has mi,j,t months of education, where

i is the education level. Thus, we compute the education training index of occupation j at

time t as,

Educationj,t =
n∑
i=1

(mi,j,t · pi,j,t) . (1)

We then sum the indices obtained for education, work experience, on the job training and on

site training to obtain the training index for a specific occupation in a given year. From the

Census, we then use information on hours usually worked in a week and weeks usually worked

in a year for 386 occupations from 2006 to 2019. We compute the employment shares for each

year and these are used to calculate the aggregate training index as a weighted average in

which, for each occupation, the training index is weighted by the employment share. In this

way, the aggregate training index is calculated for each reference year from 2006 to 2019.10

Figure 1 shows the results. The average time required to acquire the skills needed to

perform the representative occupation in the U.S. economy is increasing over time, from 6.29

years in 2006 to 7.04 years in 2019.

Figure 1: The Aggregate Training Index

To investigate the sources of the rise of the aggregate training index, we calculate the

index for a standard three occupation classification: high-skill, middle-skill, and low-skill.

10We start in 2006, the first year in O*NET with a large enough occupation sample (i.e., larger than 300
occupations) after merging with Occ1990 Census classification and a consistent Education, Training and
Experience file. We stop in 2019 to avoid compositional effects due to the Covid pandemic.
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11 Figure 2 shows the results. There is a clear increase in the training index of high-skilled

occupations. In contrast, the corresponding indices for middle- and low-skilled occupations

are notably stable over time. Thus, the aggregate training index is increasing both because

high-skill/high-training occupations are gaining employment shares in the economy, and

because the training time required to perform these occupations is increasing over time.12

Figure 2: Training Index by occupation

Training time and Unemployment Spells

In general, switching occupations requires a larger unemployment spell compared to stay-

ing within the same occupational category at re-employment. As a result, the duration of

unemployment tends to be longer for switchers, as documented in Carrillo-Tudela and Viss-

chers (2023). Here we aim to explore if the length of unemployment is positively related

to the training time needed to perform the destination occupation. The idea is that, the

higher the training time at the destination occupation, the higher the probability that the

worker needs to acquire additional training before being able to perform the occupation. To

investigate this issue, we use data from CPS IPUMS to measure the unemployment spell

11We use the definition in Cerina, Dienesch, Moro, and Rendall (2023). High Skilled occupations are: all
managerial and professional occupations (codes 004–199); middle skilled occupations are technicians, sales,
admin services, mechanics and transport, precision worker, and machine operators (codes 203-889 except
405-471); and low skilled occupations are the remaining occupations (codes 405-471). We drop agriculture
and mining.

12In Appendix A we discuss the rationale for using all types of training to construct our index.
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Table 1: Relationship between weeks unemployed last year, training and no moving

Dependent Variable: Weeks unemployed last year
Variable Model 1 Model 2 Model 3
Training 0.066*** 0.084** 0.054

(0.022) (0.035) (0.034)

No move -0.676*** -2.892*** -2.208***
(0.153) (0.267) (0.308)

Intercept 15.782*** 18.443*** 18.389***
(0.143) (0.247) (0.230)

Observations 29.554 10.455 10.455
Year FE No No Yes

Note: * p<0.1; ** p<0.05; *** p<0.01. Standard errors are in parentheses below coefficients. Model 1 is
based on observations from 1976 to 2019. Models 2 and 3 are based on observations from 2006 to 2019.

of agents switching occupations from 1976 to 2022.13 We regress the average length of un-

employment on the training index of the destination occupation and a binary variable that

takes the value one if the destination occupation is the same as the original occupation. We

run three specifications. First, we exploit data from 1976 to 2019 and use a static version

of the training index, where its value is fixed at the 2021 level. Second, we consider only

the years 2006-2019, for which we can compute a measure of the training index at the three

digit occupation level that changes over time.14 Third, we add fixed effects to the previous

specification.

We estimate:

Yi,j = β0 + β1X1,j + β2X2,j + ξt + εi,

where Yi,j is the mean of weeks unemployed last year of agents laid off from occupation

i and moving to occupation j ; X1,j is the training expressed in years associated with the

j-th occupation of destination; X2,j is a dummy variable ’no move’ which assumes value 1

whenever the occupation of origin is the same as the occupation of destination, i = j; and

ξt are year fixed effects.

As in Carrillo-Tudela and Visschers (2023), we find that workers switching occupation

have longer unemployment spells, with the coefficient on “no move” being negative and

significant in all specifications. In addition, we find that the level of training in the destination

13We use the variable weeks unemployed last year (wksunem1), which provides information on the duration
of unemployment in the previous year for both currently employed and unemployed respondents, as long as
the respondents are in the universe for this variable.

14See Appendix A.
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occupation is associated with longer unemployment spells. This is true for both sample

periods 1976-2019 and 2006-2019. In the last specification, in which we also add time fixed

effect, the coefficient remains positive but loses statistical significance, although not far

from significance at the 10% level. While these results do not claim causation, they show

that, on average, longer unemployment spells are associated with larger training indices,

suggesting that this variable might affect the length of time laid-off workers need to find

a new occupation. In the next section, we embed these insights into a dynamic multi-

occupation growth model.

3 Model

3.1 Household

There is a household composed of a unit measure of agents, iϵ[0, 1]. Each agent has instan-

taneous utility,

ûi,t =
c1−ψi,t − 1

1− ψ
−Bkl

µ
i,t,

where ci is consumption and li is the amount of labor that the agents provides to the house-

hold. Bk is a parameter governing the disutility of working, which is occupation specific.15

Each agent has total lifetime utility given by:

ui =
∞∑
t=0

βtûi,t,

and utility of the household is:

W =

∫ 1

0

uidi.

At any time t, agents work in one of J market occupations, labeled k = 1, 2, ...J , or they

are unemployed. Defining Nk,t as the fraction of the population working in occupation k at

time t, unemployment at t is defined by:

ut = 1−

[
J∑
k=1

Nk,t

]
. (2)

In each period, the household owns the stock of robots rt in the economy and decides

15Thus, if an agent switches occupation, her Bk changes.
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how much investment to make in robots,

rt+1 = It + rt(1− δ),

where It is investment in robots and δ is the depreciation rate of the stock of robots. There

is a unique good produced in the economy that can be used for consumption or investment

purposes.

Given the sector k in which an agent works at time t, which is decided at t − 1, the

amount of labor time the agent provides to the household, lk,t, is optimally split by the

latter into two components: lk,t − lsk,t, which is sold in the market in exchange for a wage

wk,t per unit of time, and lsk,t, which is used by the household to train new workers that will

work in occupation k from t+ 1 onward.

To model the fraction of agents available to work in each occupation at t + 1 we follow

Phelan and Trejos (2000), and define the following law of motion:

Nk,t+1 = (1− κ)
[
(1− γk)Nk,t + πk(ut, l

s
k,t)Nk,t

]
, (3)

where γk is an exogenous separation rate at which the labor force in occupation k becomes

unemployed, and κ is a probability of dying (i.e., exiting the labor force).16 The function πk

is defined as:

πk(ut, l
s
k,t) = Ψuϕkt

(
lsk,t
)1−ϕk , (4)

and represents a training technology available to the household, which denotes the amount

of the new entrants into occupation k achieved per existing worker in occupation k.17 The

inputs to this function are the current pool of unemployed workers, ut, and the amount of

time workers currently in occupation k spend training new workers, lsk,t. It follows that the

total amount of training time in occupation k at time t is given by Nk,tl
s
k,t. The parameter ϕk

denotes how difficult/costly it is to train new workers for occupation k. A larger ϕk implies

that unemployment is more important while a smaller ϕk implies that the training time of

workers becomes more relevant. 18

16Each period, a fraction κ of the population exits the labor force and is replaced by new agents who enter
the economy as unemployed.

17Phelan and Trejos (2000) adopt a similar setting to model labor flows across different sectors of the
economy. However, they consider the term lsk,t as a search effort in recruiting new workers by firms, thus
interpreting (4) as a matching function typical of the search and matching literature. For us, lsk,t is time
spent to train new workers, and so we interpret (4) as a training technology and estimate it accordingly in
the quantitative part.

18The training function allows us to tractably model the flow of workers across broad occupational cate-
gories in such a way that they depend on the training time used in the training process. A potential concern
with this specification is that it considers all unemployed workers alike. Thus, a worker previously employed
in a high-skilled occupation is equal to one previously employed in a middle-skilled occupation from the
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Substituting the definition of unemployment and the training function into (3), we obtain

that the law of motion of workers in occupation k is given by:

Nk,t+1 = Nk,t

(1− γk) + Ψ
(
lsk,t
)1−ϕk (1− [ J∑

k=1

Nk,t

])ϕk
 . (5)

The utility function of the household weights all agents equally, so the marginal utility of

consumption for each agent is the same as the maximized utility. We prove in Appendix C

that this implies that all agents display a common level of consumption at any date t, which

we denote by ct. It follows that we can write the problem of the household as:

max
ct,lk,t,l

s
k,t,rt+1,Nk,t+1

W =
∞∑
t=0

βt

{
c1−ψt − 1

1− ψ
−

[
J∑
k=1

Bkl
µ
k,tNk,t

]}
, (6)

subject to the budget constraint,

ct + rt+1 − rt(1− δ) ≤
J∑
k=1

wk,tNk,t

(
lk,t − lsk,t

)
+ pr,trt, (7)

and condition (5) for each k. In (7), pr,t is the rental rate of robots, while the price of

consumption and investment is taken as the numeraire and normalized to one. The household

chooses in each period t: (1) the common consumption level of agents, ct; (2) the work effort

of each type of agent in sector k, lk,t; (3) how much of that effort goes to the training function

instead of production, lsk,t; (4) the stock of robots at t+1; and (5) the size of each occupation

at t+ 1.

3.2 Firm

3.2.1 Occupations

We follow the recent literature on task based technological change in defining an occupation

j as a set of tasks i ∈ [0, I]. These produce an occupational output denoted by Lj, which

can be thought of as a quantity index of all the tasks performed within the occupation. The

amount of labor used to perform a task i is denoted lij. We assume that there potentially

standpoint of the training function. While this might appear a strong assumption, note that the training
function in occupation k transforms only a fraction of unemployed workers into new labor force for occupa-
tion k. A potential interpretation here is that training time is the requirement to retrain the actual newly
hired worker and not all unemployed workers. In addition, our three occupation classifications imply sub-
stantial heterogeneity within each group. Thus, an agent separated from an occupation like “management”
might move to“science occupations.” While in our categorization both occupations belong to the high-skilled
group, it is unlikely that no re-training is required for the switch.
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exists a technology that allows robots to perform task i in occupation j, and denote rij as

the stock of robots used to perform such task. When the technology exists for robots to

perform a certain task, then labor and robots are perfect substitutes in performing the task

(Autor, Levy, and Murnane, 2003). Thus, output of occupation j is defined as:

Lj =

[∫ I

0

θi [αjrij + lij]
ρj di

] 1
ρj

,

where ρj governs the elasticity of substitution between two different tasks, θi is the impor-

tance of task i in the occupation and αj is the productivity of robots in occupation j, which

can be interpreted as a measure of robots’ embodied technology.

We assume that there is a firm that maximizes the output of a certain occupation j,

given the amount of labor time, l̄j, and the stock of robots r̄j, allocated to the occupation.19

The problem is:

max
lij ,rij

Lj =

[∫ I

0

θi [αjrij + lij]
ρj di

] 1
ρj

,

subject to
∑I

i=1 lij=l̄j and
∑I

i=1 rij=r̄j. We make the following three assumptions:

� Assumption 1: We assume that technology is such that robots can perform tasks [0, î]

while they cannot perform tasks (̂i, I].

� Assumption 2: All task have the same importance in the occupation, θi = θ = 1 for

each task i.

� Assumption 3: Labor and robot prices in equilibrium are such that αjwj > pr.

Assumption 1 defines the exogenously set of tasks that robots can perform. In the quantita-

tive part, we study the reaction of the economy to a sudden and unexpected (i.e., MIT) shock

that increases this fraction. Assumption 2 is a symmetry assumption made for tractability.

Assumption 3 requires that, when a technology exists for robots to perform a certain task,

these are cheaper than labor, so that only robots are used in performing that task.20 Under

these assumptions, the maximized output of occupation j is a function of the fraction of

tasks that can be performed by robots î and it is given by:

Lj (̂ij) =
[
α
ρj
j î

1−ρj
j r̄

ρj
j + (I − îj)

1−ρj l̄
ρj
j

] 1
ρj . (8)

19This is the same firm we introduce in the next section, that produces output by means of a technology
that aggregates occupations. The problem discussed here is a sub-problem of the profit maximization problem
of that firm.

20In the general equilibrium of the model, we verify that this condition is always met.
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3.2.2 Production

There is one representative firm in the economy producing output at each time t with the

following production function:

Y = AL̄. (9)

Here L̄ is a labor input given by an aggregation of the J occupations within the firm,

L̄ =

[
J∑
k=1

ηkLk(îk)
σ

] 1
σ

, (10)

where
∑J

k=1 ηk = 1 and, in turn, Lj (̂ij) can be expressed according to (8), as

Lj (̂ij) =
[
α
ρj
j î

1−ρj
j Rρ

j + (I − îj)
1−ρLρj

] 1
ρ
. (11)

The variables Rj and Lj are the amounts of robots and labor that the firm decides to employ

in occupation j, and îj defines the number of tasks in that occupation that can be performed

by robots.21

Under perfect competition, the firm maximizes profits,

max
Lk,Rk

Π = Y −

[
J∑
k=1

wkLk

]
− pr

[
J∑
k=1

Rk

]
, (12)

subject to (9), (10) and (11). Note that in (12), the price of output is normalized to one,

as this good is the numeraire of the economy.

3.3 Equilibrium

An equilibrium for the economy under study is a set of prices
{
{wk,t}Jk=1 , pr,t

}∞

t=0
, al-

locations for the household
{
ct, rt+1,

{
lk,t, l

s
k,t, Nk,t+1

}J
k=1

}∞

t=0
and allocations for the firm{

{Lk,t, rk,t}Jk=1

}∞

t=0
such that:

a) Given prices, ct, rt+1,
{
lk,t, l

s
k,t, Nk,t+1

}J
k=1

solve the household’s problem (6);

b) Given prices, {Lk,t, rk,t}Jk=1 solve the firm’s problem (12) at each t;

c) All markets clear at each t :

Yt = ct + It,

21Note that we differentiate notation for Rj and Lj with respect to the previous section, because in there
robots and labor at the occupation level were taken as given, while here they represent choice variables for
the firm.
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Lk,t = (lk,t − lsk,t)Nk,t+1, ∀k = 1, .., J

rk,t =
J∑
k=1

Rk,t.

4 Calibration and Estimation

To parameterize the model, we proceed in three steps. We first estimate the barriers to

entry in each occupation (i.e., the importance of training) by exploiting the law of motion

of workers by occupation, Equation (5). We then use two separate methods to identify

the size of the technology shock by using data from the Occupational Information Network

(O*NET) and the International Federation of Robotics. Among the remaining parameters,

a set of them is based on previous literature estimates, while the rest is calibrated to match

a number of data targets.

4.1 Estimating barriers

In this section we describe the methodology to estimate the size of barriers, which in the

model are represented by the value of ϕk in each occupation. From the law of motion of

occupational size (5), we can write:

Nk,t+1 − (1− κ)(1− γk)Nk,t

Nk,t

= Ψ (ut)
ϕk
(
lsk,t
)1−ϕk . (13)

Taking logs on both sides, we obtain a log-linear equation suitable for estimation, in which

the coefficient on unemployment provides the value of ϕk. Given the evidence in Figure 2,

it is plausible that ϕk also varies over time. Thus, we use variation across U.S. Metropoli-

tan Statistical Areas (MSA) and time to estimate a common training process. As we do

not observe the value of lsk,t in the data, we construct a proxy of training requirements of

unemployed workers by MSA in a given year based on the training index from Section 2.

The training variable is constructed as trainmk,t =
∑

i

(
traink,t − trainmi,t

)
, where trainmi,t is

the training individual i from the unemployment pool in MSA m has and traink,t is the

training required to work in occupation k at time t. We estimate a pooled regression for

all occupations, as the model implies a common training productivity Ψ across occupations.

Defining the left hand side of equation (13) as ∆Nk,t+1, we estimate,
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log
(
∆Nm

k,t+1

)
= a0+

∑
j

(
(a1j + b1j × t) log (umt ) + a2jlog

(
trainmj,t

)
+
∑
h

γhjX
m
ht

)
×occj+δt+ϵmk,t,

(14)

where occj is a dummy taking the value 1 if j = k and zero otherwise, δt is a common time

fixed effect, the superscript m refers to the MSA, the weight on unemployment is, a1k = ϕk,

b1k captures a time trend in ϕk and Xh are controls characteristic of the unemployment pool

in an MSA m , namely the share of unemployed originally coming from occupation k and

the share of agents not in the labor force (NILF) of the MSA.22

We set the high-skilled occupation as the reference occupation. Table 2 shows a number

of specifications with different subsets of Xh and with or without time trends in the ϕk’s.

The bottom four rows compute the linear combinations and corresponding p-values for the

parameter of interest, ϕk, using the Delta-method. We impose the restriction that ϕl = 0.8, as

the regression coefficients are not statistically significant for the low-skilled.23 We cannot use

the natural choice/limit of ϕl = 1, as our model requires a ϕk < 1 to generate unemployment

differences across steady states.24 The weight on the unemployed pool for the high-skilled,

when allowing for a time trend, lies between 0.376 and 0.592. For the simulations, we use the

mid-point ϕk = 0.484. We do the same for the middle-skilled and when considering changes

in ϕh over time. The time trend on the middle-skilled is close to zero and not statistically

significant. Thus, the middle-skilled parameter is ϕm = 0.732 and the counterfactual high-

skilled parameter is ϕh,new = 0.245, implying a ∆ϕh = 0.245− 0.484 = −0.239, which is used

in quantitative Section 5.3 below.

4.2 Shocks to îj

We use two separate methods to identify a lower and an upper bound to the size of the

technology shock.25 Both methods are based on the Occupational Information Network

(O*NET) “Task Statement”module and the “Work Activities, Intermediate Work Activities

(IWA) and Detailed Work Activities” module. To identify the shock(s) to task in the data,

we proceed as follows. We first map tasks to Intermediate Work Activities (IWA) in O*NET.

22Note that we include individuals not in the labor force in the unemployment pool, as this more accurately
reflects the definition of unemployment in our model. However, we do exclude all disabled and retired workers.

23We also run robustness with ϕl = .9. Results are available upon request.
24To see this, consider the law of accumulation of occupation specific employment (5). Imposing steady

state and ϕk = 1 leaves an equation which can be solved for the unemployment level. This depends only on
the values of the parameters γk and κ, and so it is invariant to technological change.

25In Appendix B, we also compute the shocks with other methods and discuss why these different methods
provide different shock sizes.
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Table 2: Estimation of Training Costs in Matching Function

VARIABLES (1) (2) (3) (4) (5)

Unemployment 0.139 0.300*** 0.533*** 0.376*** 0.592***
(0.114) (0.116) (0.117) (0.118) (0.118)

Unemp. high-skilled x time -0.022*** -0.018***
(0.005) (0.005)

Unemp. x middle-skilled 0.530*** 0.361*** 0.215 0.315** 0.181
(0.130) (0.134) (0.142) (0.136) (0.143)

Unemp. middle-skilled x time -0.006 -0.005
(0.005) (0.005)

Unemp. x low-skilled 0.661*** 0.500*** 0.267** 0.424*** 0.208*
(0.114) (0.116) (0.117) (0.118) (0.118)

Train -0.922*** -0.765*** -0.957*** -0.800*** -0.976***
(0.093) (0.094) (0.137) (0.094) (0.137)

Train x middle-skilled 0.123 -0.108 0.447** -0.074 0.451**
(0.139) (0.148) (0.193) (0.148) (0.193)

Train x low-skilled 0.503*** 0.271* 0.677*** 0.208 0.614***
(0.143) (0.144) (0.184) (0.147) (0.189)

a0 -0.835*** -1.231*** 0.649*** -1.123*** 0.714***
(0.062) (0.080) (0.198) (0.087) (0.198)

Observations 5,249 5,249 5,243 5,249 5,243
Year FE YES YES YES YES YES
Control unemployed pool No Yes x Occ Yes x Occ Yes x Occ Yes x Occ
Control NILF No No Yes x Occ No Yes x Occ
ϕh .139 .3*** .533*** .376*** .592***
ϕm .669*** .66*** .749*** .691*** .772***
ϕl .8 .8 .8 .8 .8
ϕh,2018 .116. .374***

Note: * p<0.1; ** p<0.05; *** p<0.01. Standard errors are in parentheses below coefficients. The regression
is based on observations from 2006 to 2018. The high-skilled occupation is the reference group.
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Then, by using the International Federation of Robotics (IFR) data, we either (1) create a

match between the tasks in each occupation and the applications of robots through text

mapping (text shock) or (2) make use of the mapping from Teubert, Rendall, and Dowe

(2024), who use Large Language Models (LLM) to determine which tasks an IFR robot

application can accomplish (GPT shock).26 Both these maps allow us to compute the number

of IWA that can be performed by robots in each occupation.27 Given the current small stock

of robots with respect to other types of capital in the economy, we interpret these mappings

as providing the set of IWA for which a technology already exists to perform certain tasks,

but that has not yet been adopted on a large scale. This is particularly true as O*NET

reports tasks performed by the worker, i.e., a task that appears in O*NET by the purpose

of the survey is currently performed by a worker in that occupation, and not by a machine

or robot. This gives us the size of the shock and the future state of the economy.

Both methods produce a similar pattern across occupations, with high-skilled occupations

having the smallest proportion of tasks that can be replaced, and low-skilled occupations

having the largest proportion. For example, LLMs suggest that robots are capable of doing

up to 54 percent of human tasks in low-skilled occupations, while our most conservative text

mapping algorithm suggests 8 percent. Given the empirical evidence on the development

of robots, we take the LLMs estimates as upper bounds and the text mapping results as a

lower bound of the shocks to îj.

Technically, we proceed as follows to introduce the shock in the model. We measure in

the data the fraction x of labor tasks I− îj that robots can potentially perform in occupation

j with the two methodologies describe above. It follows that x(I− îj) gives us the shock ∆îk

in occupation k.

4.3 Predetermined parameters

We start by normalizing to one total factor productivity {A} and the number of tasks in each

occupation {I}. Thus, îj is naturally interpreted as the set of tasks performed by robots in

occupation j. We then set the parameters {β, σ, δ, ψ, µ} to standard values in the literature.

We set a subjective discount factor of β = 0.96, the inverse of the intertemporal elasticity

of substitution to ψ = 1.5, and the inverse of wage elasticity of labor supply to µ = 3.0.

The elasticity of substitution between occupations is set to σ = 0.254 from estimates in

Caunedo, Jaume, and Keller (2023). We also follow them in computing the depreciation

rate δ = 0.113 and in estimating the elasticity of substitution between robots (i.e., capital)

26Details can be found in Appendix B.
27We assume that an IWA can be performed by robots if there is at least one task pertaining to that IWA

that is mapped to an IFR application.
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and labor at the occupation level. Adopting their estimation to our 3-occupation definition

delivers ρl = 0.244, ρm = 0.247, and ρh = −0.153. These numbers imply that capital and

labor are substitutes in low- and middle-skilled occupations, while they are complements in

high-skilled occupations. Finally, the separation rates {γj} and the fraction of new workers

{κ} are computed using 2006-2018 CPS data and refer to the average separation rate by

occupation during this period and the fraction of young new workers without prior history

in the labor market.

4.4 Calibrated Parameters

We first assume that ηh = 1−ηl−ηm, Bm = 1, αm = 1.We are then left with ten parameters,{
ηl, ηm, Ψ, Bl, Bh, αl, αh, îl,0, îm,0, îh,0

}
, where îk,0 refers to the current level of tasks that can

be performed by capital/robots in occupation k. We use ten targets from 2006, employment

shares of each occupation (two targets), worker shares of each occupation (two targets),

unemployment rate (one target), wage premium (two targets), and labor expenditure shares

by occupation (three targets) as follows:

1. The weight of each occupation in output {ηj} determines the importance that each

occupation has in producing output. We match CPS hours employment shares;

2. The productivity of the training functions {Ψ} affects the rate at which agents can

move from unemployment to employment. We set this to match an unemployment

rate of 0.167 in the steady state;28

3. The weight of labor in utility {Bk} measures the disutility that the household has

working in the market. We calibrate them by matching the CPS share of workers in

each occupation;

4. The productivity of capital/robots {αk}. We calibrate them by matching the wage

premium between high- and middle-skilled and between high- and low-skilled workers.

5. The initial tasks performed by robots îk,0. We match the expenditure share of labor

by occupation. We compute labor expenditures using CPS data and Caunedo, Jaume,

and Keller (2023) tool expenditure, imposing an aggregate labor share of 0.59.

All parameter values are found in Table 3, while data and model targets are in Table 4.

28Note that our definition of unemployment includes agents not in the labor force.
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Table 3: Model Parameters

Estimated Type Value

{ϕl, ϕm, ϕh} Weight on unemployed pool (low, middle, high) {.8, .732, .484}
∆ϕh Shock to training importance (high-skilled) -0.239
{γl, γm, γh} Separation rates (low, middle, high) {.055, .049, .018}
{ρl, ρm, ρh} Elasticity of substitution between labor and robots {.244, .247,−.153}
δ Depreciation rate of robots .113
κ Perpetual youth .008{
∆îl,∆îm,∆îh

}
lb

Lower-bound task shock (low, middle, high) {.060, .042, .016}{
∆îl,∆îm,∆îh

}
ub

Upper-bound task shock (low, middle, high) {.312, .240, .069}

Calibrated Type Value

{ηl, ηm, ηh} Weight of occupations in output {.164, .551, .285}
{αl, αm, αh} Robot productivity by occupation {2.545, 1, 2.982}{
îl, îm, îh

}
Robot task share by occupation {.308, .342, .423}

Ψ Matching function coefficient .517
{Bl, Bm, Bh} Disutility of work by occupation {.231, 1, 2.275}

Predeter. Type Value

σ Substitutability between occupations 0.254

A Aggregate productivity 1
ψ Income elasticity of labor supply 1.5
β Discount factor .96
µ Inverse of wage elasticity of labor supply 3.0

Note: The first set of parameters is estimated from 2006-2019 CPS data, the second set is
calibrated to match targets in Table 4, and the last is predetermined.

Table 4: Targets

Type Data Model

Parameters on labor {ηl, ηm, Bl, Bh}:
Employment shares in hours (low, middle) {.195, .518} {.228, .522}
Employment shares in workers (low, middle) {.172, .523} {.142, .523}

Parameters on robots
{
αl, αh, îl, îm, îh

}
:

Wage premium (high to low, high to middle) {2.164, 1.395} {2.119, 1.215}
Labor shares by occupation (low, middle, high) {.525, .526, .674} {.526, .517, .673}

Parameter on matching {Ψ}:
Unemployment rate .167 .164

Note: Targets are estimated from 2006 CPS data.
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5 Results

5.1 Shocks to tasks performable by robots

In this section we present an experiment in which there is a set of unexpected (i.e., MIT)

technological shocks, one in each occupation, that increase the set of tasks that robots can

perform. For illustrative purposes, we start with the text shocks. The size of the shock

is different across occupations and it is given by what is described in section 4.2. Thus,

this experiment allows us to study the quantitative effects of an innovation that allows to

suddenly employ, at zero cost, a technology in which the tasks performed by robots are more

than with the previous technology.

Figure 3 reports the result for aggregate variables. The shock to tasks creates a produc-

tivity effect that increases consumption, investment, the stock of robots and output along

the transition to the new steady state. As robots are more productive, there is a larger

demand for them and, along the transition, their rental price increases.

Task-based technological change fosters a rise in steady-state unemployment. This is

because the reduction in the fraction of workers in low- and middle-skilled occupations is not

fully compensated by the increase in the fraction of workers in high-skilled occupations, as

shown in Figure 4. However, transitional unemployment declines, not increases, with respect

to the initial steady state. Along the transition, workers flow out of low- and middle-income

occupations and into high-skilled occupations, as training time in high-skilled occupations

increases. However, the transition out of the first two is relatively slow. By this, we mean

that the household could, in principle, speed up such process, by setting the amount of

training in low- and middle-income occupations to zero. However, although there is a clear

drop in training in these two occupations, as shown by the panels in the second row of Figure

4, this drop is equal or less than 10% of the initial steady state level.

As robots increase in all occupations, total labor declines in low- and middle-skilled roles,

where the two inputs are substitutes, but increases in the high-skilled occupation, where they

are complements. However, all worker types reduce their labor time and see increases in their

real wages, both along the transition and in the new steady state.
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Figure 3: Shock to îk in all occupations: aggregate variables.
Note: Time zero is the initial steady state. All variables are in levels. Price refers to the rental

price of robots.

23



Figure 4: Shock to îk in all occupations.

Note: Row 1: workers, Nk,t; row 2: time spent in training lsk,t; row 3: time spent in productive

work, lk,t − lsk,t; row 4: robots rk,t; row 5: total labor Nk,t

(
lk,t − lsk,t

)
; row 6: real wages wk,t.

Time zero is the initial steady state. All variables are in levels.

Figures 5 and 6 provide comparisons between the text shocks and the GPT shocks. With

the latter, the new steady state is substantially further away than with the former. However,

the shape of the transition is similar for most variables. An important exception is unem-

ployment. Overall, with a larger shock, unemployment increases both along the transition

and in steady state, but hours worked fall drastically. One marked difference between the

two transitions is that, with a large task shock, time spent working experiences a large fall,

even for high-skilled occupations. Nonetheless, this fall is compensated by more training

of new high-skilled workers, resulting in a larger size of high-skilled occupations and total

hours worked in those occupations (see row 3 and 5 of Figure 6). Thus, our model predicts

that, in response to large task shocks, unemployment would increase, but there would be a

substantial decline in hours worked in all occupations, with a large increase in leisure time.
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Figure 7 reports the welfare of individuals in specific occupations and welfare of the

household. For readability, the figure assumes that the shock occurs in period 0. Both the

small and the large shocks to îk produce an increase in welfare for all types of workers, on

impact, along the transition and in the new steady state.29

Figure 5: Shock to îk in all occupations: aggregate variables.

Note: The solid lines refer to the text shock (lower-bound) and the dashed lines are the GPT
shock (upper-bound). Time zero is the initial steady state. All variables are in levels. Price refers

to the rental price of robots.

29A potential concern here is that these results might be driven by the perfect consumption insurance
provided by the household to all types of agents, regardless of the occupation. The result might not hold in a
decentralized setting in which agents do not belong to a larger household, and so do not have any insurance
device, thus suffering a consumption drop when unemployed. However, the results here suggest that, even
in that case, there should exist a transfer scheme that can be implemented such that all agents experience a
welfare increase after the shock.
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Figure 6: Shock to îk in all occupations.

Note: The solid lines refer to the text shock (lower-bound) and the dashed lines are the GPT
shock (upper-bound). Row 1: workers, Nk,t; row 2: time spent in training lsk,t; row 3: time spent

in productive work, lk,t − lsk,t; row 4: robots rk,t; row 5: total labor Nk,t

(
lk,t − lsk,t

)
; row 6: real

wages wk,t. Time zero is the initial steady state. All variables are in levels.
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Figure 7: Welfare following a shock to îk in all occupations in period 0.

Note: The solid lines refer to the task shock (lower-bound) and the dashed lines are the GPT
shock (upper-bound). Time zero is the initial steady state. All variables are in levels.

5.2 What’s different from the past? A comparison with CETC

A concern with a task-based type technological change is that it might disrupt employ-

ment in a way that is different from the past because it makes capital/robots perfectly

substitutable with specific tasks performed by workers, rather than raising the productivity

of capital/robots in a homogeneous (across tasks) way, as capital embodied technological

change (CETC) does. In this section we investigate this possibility by comparing the re-

sponse of the economy following the task-based shocks of Section 5.1 to that following a

shock to robots productivity. In the model, this is summarized by the parameter αk in the

occupation production function.

Equation (11) shows that both the fraction of tasks îk and the productivity of robots αk

affect the productivity of robots in occupation k. There are, however, two main differences.
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First, changes in îk also affect the productivity of labor. Second, the effect on output of both

changes depends on the elasticity of substitution between capital and labor at the occupation

levels, but in different ways. More specifically, using equilibrium conditions of the model, we

can rewrite total output in equilibrium as:

Y ∗ = A

[
J∑
k=1

ηkLk(îk)
σ

] 1
σ

= A

[
J∑
k=1

η̂k [α̂kr
ρk
k + Lρkk ]

σ
ρk

] 1
σ

, (15)

where α̂k = αρkk

(
îk

(I−îk)

)(1−ρk)
and η̂k = ηk(I − îk)

σ(1−ρk)

ρk . In Equation (15), α̂k is the produc-

tivity of robots, while η̂k is the productivity of occupation k, and the productivity of labor is

normalized to one in the equilibrium output production function. A change in îk affects both

the productivity of robots (α̂k) and the productivity of the occupation (η̂k,t) of equilibrium

output Y ∗. Instead, a change in αk affects only the productivity of robots.

To compare the effects of the different types of shocks, we first need to set the size of the

two shocks. We proceed as follows. We set the shocks to îk as in section 5.1 (see Table 3).

Then, we set the shock to αk such that the occupational output Lj (̂ij) in the new steady

state is the same as the one generated by the change in îk. In this way, the change in the

occupational output in the new equilibrium is equivalent to that induced by the shock on

îk.
30

Results are reported in Figure (8). While both shock types are set to produce the same

output level, consumption and unemployment are higher with the productivity shock. In

contrast, investment and the robot stock in both the transition and in the new steady state

are lower. The shock to îk first leads to a visible fall in unemployment along the transition,

and then an increase in the new steady-state. In contrast, shocks to αk lead to a very small

(close to zero) fall and then a larger increase in unemployment. In summary, the model

predicts that standard capital embodied technological change produces more unemployment

than task-based technological change, not less, both along the transition and in the new

steady state.

Figure (9) allows to investigate why this is the case. With the shocks to αk, real wages

increase in the three occupations more than with the shocks to îk. Consequently, time spent

in training increases less in the first case for the high-skilled occupation - the occupation

receiving unemployed workers along the transition. In the short run, this is offset by a

smaller fall in the training-time to the low-skilled occupation. As a consequence, aggregate

30Technically, we have to solve a three-targets/three-parameters calibration problem. Given all the pa-
rameters of the model, as calibrated in Section 4, we need to find the values for the three shocks to the
αk’s such that the model replicates the same occupational outputs of the new steady state obtained in the
experiment in which we shock the îk.
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unemployment does not fall with a shock to αk, even on impact. But unemployment increases

more as aggregate training time falls and total hours worked in the high-skilled occupation

remain roughly flat after an initial fall.

Overall, capital embodied technical change leads to a larger welfare increase than task

biased technical change (not reported).31 However, the shocks to îk generate larger inequality

along the transition, as measured by wages. The bottom row of Figure 8 reports the evolution

of the wage premium between high- and middle-skilled and between high- and low-skilled

agents. The shocks to îk increase the former ratio by almost 4%, and the second by 2.7%.

The shocks to αk,instead, induces an increase of 2% and 2.2% respectively.32

31The welfare comparison between the îk shock and the αk shock is similar to the one reported in Figure
7 between the two shocks to îk. Welfare is larger with the αk shocks both on impact, along the transition
and in the steady state.

32Regarding the wage premium between middle- and low-skilled, the shocks to îk induces an increase of
1.2%, while the shocks to αk do not increase it. This is not reported in Figure 8.
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Figure 8: Comparison of a shock to îk in all occupations versus a shock to αk in all occupations:

aggregate variables.

Note: The solid lines refer to the lower-bound shock through text mapping and the dashed lines
are the counterfactual CETC shock. Time zero is the initial steady state. All variables are in

levels. Price refers to the rental price of robots.
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Figure 9: Comparison of a shock to îk in all occupations versus a shock to αk in all occupations:

occupations.

Note: The solid lines refer to the lower-bound shock through text mapping and the dashed lines
are the counterfactual CETC shock. Row 1: workers, Nk,t; row 2: time spent in training lsk,t; row

3: time spent in productive work, lk,t − lsk,t; row 4: robots rk,t; row 5: total labor Nk,t

(
lk,t − lsk,t

)
;

row 6: real wages wk,t. Time zero is the initial steady state. All variables are in levels.

5.3 What’s different from the past? The role of barriers

In this paper, we highlight that training requirements increased over time in the U.S. for

high-skilled occupations. This observation represents another difference with respect to the

past that has the potential to generate technological unemployment. To investigate this

issue, in this section we compare the case described in the previous section to one in which,

in addition to the shocks to tasks, there is an unexpected fall in ϕh. This parameter governs

how difficult it is to train workers to enter the high-skilled occupation. The smaller ϕh,

the more important the training time of workers already in the occupation, and the less

important the current unemployment pool in producing new labor for occupation h. We set
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the shock to ∆ϕh = −0.239 from the estimated change in Equation (14).

Results are reported in Figure 10. The larger training parameter makes unemployment

increase, both in the transition and in the steady state. From Figure 11, we observe that the

larger training requirement substantially changes the occupational structure in the steady

state. The high-skilled occupation shrinks rather than expands, and the opposite happens to

the middle-skilled one. Recall that the robot shock is largest in the low-skilled occupation.

Therefore, in this instance, unemployment is not caused by workers moving from low- and

middle-skilled occupations to high-skilled ones. Rather unemployment is caused by a fall

in the training of low- and middle-skilled workers that cannot be offset by the increase in

training-time dedicated to high-skilled workers. That is, even though the training of high-

skilled workers rises, the entry rate into high-skilled occupations falls in the face of increasing

training costs. While the middle-skilled occupation absorbs some of the newly unemployed,

this is not enough to prevent a higher unemployment rate. This result highlights the role

of training in shaping the occupational structure, both in the steady state and along the

transition.
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Figure 10: Shock to îk in all occupations and shock to training costs in the high-skilled

occupation ∆ϕh = −0.239: aggregate variables.

Note: The solid lines refer to the text shock and the dashed lines are the counterfactual
high-training cost transition. Time zero is the initial steady state. All variables are in levels.

Price refers to the rental price of robots.
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Figure 11: Shock to îk in all occupations and shock to training costs in the high-skilled

occupation ∆ϕh = −0.239.

Note: The solid lines refer to the text shock and the dashed lines represent the counterfactual in
which the text shock occurs together with the training shock. Row 1: workers, Nk,t; row 2: time
spent in training lsk,t; row 3: time spent in productive work, lk,t − lsk,t; row 4: robots rk,t; row 5:

total labor Nk,t

(
lk,t − lsk,t

)
; row 6:real wages wk,t. Time zero is the initial steady state. All

variables are in levels.

Figures 12 and 13 show the same experiment for the GPT shock. In this instance, the

two transitions look even closer in terms of output, consumption, investment and the stock

of robots. However, the pattern for unemployment is substantially different, with first a drop

and then an increase along the transition, before reaching a new higher level steady state.

The reason is that, with the GPT shock, the increase in time spent in training is so substantial

that it dominates the shock to training costs. The large increase in training time in high-

skilled occupations is enough to increase the size of this occupation in the periods after the

shocks, in a similar vein as in the case without the training shock. On the other hand, the

decrease in training time in low- and middle-skilled occupations is less pronounced compared
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to the case without the training shock. As a result, in the first part of the transition, the

growth in the high-skilled occupation is similar to the case without the training shock, while

the decline in the other two occupations is slower, and so unemployment declines. However,

in the new steady state, the size of the high-skilled occupation is smaller with the training

shock and unemployment is higher. The other marked difference is in the total hours worked

of high-skilled workers along the transition (see Figure 13, row 5). A large task shock leads

to large robot investment, which offsets the productivity loss of shifting workers’ production

hours to training hours even in the face of higher training costs.

Figure 12: Shock to îk in all occupations and shock to training costs in the high-skilled

occupation ∆ϕh = −0.239: aggregate variables.

Note: The solid lines refer to the GPT shock and the dashed lines are the counterfactual
high-training cost transition with the same GPT shock . Time zero is the initial steady state. All

variables are in levels. Price refers to the rental price of robots.
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Figure 13: Shock to îk in all occupations with higher training costs ∆ϕh = −0.239 occupations.

Note: The solid lines refer to the text shock (lower-bound) and the dashed lines are the GPT
shock (upper-bound). Row 1: workers, Nk,t; row 2: time spent in training lsk,t; row 3: time spent

in productive work, lk,t − lsk,t; row 4: robots rk,t; row 5: total labor, Nk,t

(
lk,t − lsk,t

)
; row 6:real

wages wk,t. Time zero is the initial steady state. All variables are in levels.

6 Conclusions

In this paper, we have examined the interplay between technological advancements, particu-

larly in robotics, and the evolving training requirements across different occupation skill lev-

els. Our analysis highlights the significant increase in the training time necessary to perform

high-skilled occupations in the U.S., which is in contrast with stable training requirements

for low- and middle-skilled occupations. This difference can have relevant implications for

labor markets by affecting the occupational structure, both in the short- and in the long-run.

To investigate the role of larger training requirements in high-skilled occupations in gen-

erating technological unemployment when there is technological change, we presented a
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dynamic multi-occupation growth model. The model shows that the introduction of new

technologies, that make robots capable of performing an increasing number of tasks within

specific occupations, leads to an overall increase in steady-state unemployment. However,

during the transitional period, unemployment decreases. This result highlights that imme-

diate unemployment impacts can differ significantly from long-term outcomes.

When comparing the effects of a task shock (robots performing more tasks) with a pro-

ductivity shock (improvements in robot efficiency), we find that the task shock creates less

transitional unemployment. The productivity shock results in smaller increases in the robot

stock and labor reallocation, leading to higher unemployment both during the transition and

in the steady state. This results suggests that tasks based technological change, which is

typically the assumed type of technological change that reshaped the occupational struc-

ture in the last forty years, creates less technological unemployment than more standard

productivity shocks.

When a task shock coincides with an increase in the training index for high-skilled oc-

cupations, as we measured in U.S. data in the period 2006-2019, unemployment decreases

along the transition when the technological shock is large, but increases when the shock is

small. This suggests that the effect of technology on unemployment depends both on the size

of the shock and the size of the barriers to workers reallocating across occupations. Also,

our results suggest that while technological progress in robotics and AI has the potential

to significantly reshape the occupational structure, the accompanying increase in training

requirements for high-skilled jobs will simultaneously affect the occupational structure, both

in the steady state and along the transition towards a new equilibrium.
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Appendix

A Training Index

The“Education, Training, and Experience”file from the O*NET database provides frequency

data related education, experience, and training levels required for each occupation. Thus,

for each element — education, work experience, and training — we have the distribution of

levels for specific occupations.

Education: Measures average years of formal education. For example, a Bachelor’s Degree

requires 16 years of education, which includes 12 years towards a high-school diploma and

4 years of college. We compute education time based on the years needed to achieve each

education level above a high-school diploma. That is, we subtract 12 years of education,

the education required to obtain a high school diploma, from each individual’s total years of

education to obtain a “required” training time for that individual’s occupation. This allows

us to have an education index that refers to the years of education necessary for a specific

occupation.

Related Work Experience: Each level specifies an interval of required work experience.

For example, for the level specifying Over 1 year, up to and including 2 years we take the

maximum time of work experience required. Therefore, in this example, two years of work

experience is required. The work experience time is estimated accordingly for each category.

On-the-Job Training and On-Site Training: Similarly to work experience, on-the-job and

on-site training levels record intervals for the required training time. The maximum time

within each interval is taken for estimating the total training time required.

We first compute the training time for each element — education, work experience, and

training — and each occupation, using formula (1) in the main text. This provides indices

of education, related work experience, on-the-job training, and on-site training for each

occupation. Next, summing the four indices at the occupation level, we obtain the total

training time required for each occupation. This is what is labeled “training index” in the

main text.

The occupational classification that we use is the O*NET-SOC code classification. To

construct the training index, as described in Section 2, we use use CPS and Census data and

compute the employment shares for each occ1990 occupation.

We begin our analysis in 2006, as this is the first year in which the O*NET database

provides a sufficient number of occupations to compute training indices for the majority of

(at least 300) occ1990 occupations (using for education, training, and experience file).33

33For instance, considering O*NET in 2005 implies that only 220 occupations occ1990 occupations are
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Constructing the aggregate training index requires merging the occ1990 classification with

the O*NET-SOC classification. The datasets from Guvenen, Kuruscu, Tanaka, and Wiczer

(2020) are used. These contain crosswalks between the occ1990 and occ2000 occupational

classifications, and between the occ2000 and soc2000 classifications. These datasets are

crucial, as they enable the crosswalk from occ1990 to occ2000, occ2000 to soc2000, and

finally soc2000 to O*NET-SOC, thereby establishing the association between the occ1990

classification used in IPUMS and the O*NET-SOC classification. This association represents

the starting point that allows us to calculate the aggregate training index. Since each occ1990

code corresponds to several O*NET-SOC codes, an average training index is calculated

for each occ1990 code, resulting in a single index per occ1990 code. In the final step we

compute the aggregate training time index, a weighted average where the training time for

each occupation is weighted by its employment share. This process is repeated for each year,

providing an estimate of the evolution of the aggregate index over time.

Rationale for using all indices in constructing the training index

To construct the training index as described in Section 2, we use all elements in the Edu-

cation, Training, and Experience file from O*NET: education, work experience, on-site or

in-plant training, and on-the-job training. We use all variables instead of only work expe-

rience and training, or only training, as some occupations require a higher level of specific

education to be performed, compared to others that may require more practical training

or work experience instead of a higher level of education. For example, a qualification of

chartered accountancy is acquired through a formal education course, while learning how to

operate a machine is more likely done at a plant. To put it differently, the importance of the

four elements is heterogeneous across occupations.

Table 5 highlights this heterogeneity in types of learning by presenting the constructed

training time for nine broad occupational categories and using various methodologies. ”Com-

plete training” refers to the training constructed as in Section 2, the training constructed

by excluding the education element and, finally, the training constructed by excluding both

education and work experience (i.e., considering only on-site or in-plant training and on-

the-job training). For professional and technicians occupations, the training required when

including the education element (9.85 and 7.93 years, respectively in 2006) is substantially

higher than that required for precision workers (6.03 years). However, when education is

excluded and the training is constructed by considering only work experience and training,

or only the training elements, training required is greater for precision workers (5.56 year

of training with no education in 2006) compared to professionals and technicians (5.28 and

represented by the O*NET classification.

41



Occupations Complete Training Training no educ. Training no educ.
no work experience

2006 2019 2006 2019 2006 2019
Managers 10.53 11.74 7.65 8.15 2.95 2.99

Professionals 9.85 10.93 5.28 5.78 2.01 2.42
Technicians 7.93 7.33 5.31 4.57 2.11 1.81

Sales 4.73 4.10 3.69 3.38 1.24 1.08
Admin Services 4.24 4.63 3.29 3.54 1.02 1.20

Low Skill
Services

2.71 2.50 2.68 2.43 1.14 1.05

Mechanics
Transport

5.21 4.56 5.32 4.52 2.74 2.42

Precision
Workers

6.03 6.86 5.56 6.02 2.66 2.28

Machine
Operators

2.40 3.54 2.65 3.53 1.16 1.58

Table 5: Training index by nine occupations.

Note: Training constructed for nine broad occupational categories and using various
methodologies.

5.31 years of training with no education in 2006). This suggests that all elements are essen-

tial to construct an accurate and comprehensive aggregated training index, as each element

significantly contributes to capturing the different training requirements across different oc-

cupations.
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B Future Tasks

We construct five indicators to assess the potential substitutability of Intermediate Work

Activities (IWA) with robots. These indicators differ based on the methodologies used to

map tasks to robots’ applications. Our findings indicate that the number of IWA that can

be potentially performed by robots depends on the design of these mappings. In section 5

we present results using two of these five measures.

The first measure, ”Map with Condition and Second Search,” is based on the specific

descriptions provided by the International Federation of Robotics (IFR). This mapping aims

to align the very core of a robot’s function with an occupation’s tasks. However, we note

that robot applications often have nuanced specifications. Some robots, for example, are

designed to operate on or with specific materials or objects. Thus, in our first mapping, we

impose a condition that checks this specific material or object appears both in the robot’s

application and in the occupational task. For instance, for the ”welding” domain, we focus

on subcategories such as arc welding, spot welding, and others. Our search criteria for this

area are “(weld| welding) & (arc|spot|laser| ultrasonic| gas| plasma)”. We classify only tasks

containing these terms as those potentially performed by welding robots. However, some

tasks also require higher-order skills like “supervising” to be performed. We first assume

these tasks are beyond robotic capabilities and refine our results conducting a second search

round. Here, we eliminate tasks that also “supervise; administer; direct; oversee; coordinate;

document; investigate; negotiate; employee training”; from robots’ capabilities. Results are

reported in Table 6 and Figure 14. We consider this mapping as the lower bound of potential

substitutability between robots and IWA, and use it as the benchmark in the quantitative

part of the paper, labeling it as Text shock.

We then assume that robots are already able to perform higher-order skills like supervis-

ing, and we remove the second round search from the previous methodology. This gives the

“Map with condition - no second search” result in Table 6 and Figure 14. Perhaps not sur-

prisingly, the largest difference compared to the previous measure is observed for high-skilled

occupations.

We then construct a measure of the IWA potentially performable by robots by exploiting

the mapping between O*NET tasks and IFR applications according to Large Language

Models (LLMs) from Teubert, Rendall, and Dowe (2024). In this case, the LLM engine is

asked, in several ways, whether a certain task can be performed by a specific type of robot.

The authors run whole combinations of tasks and IFR applications with different queries on

several LLMs. They then pick the query that gives the most consistent results across all LLMs

and the training (hand-labeled) data. This methodology results in a substantially larger
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Figure 14: Robots measures comparison

fraction of IWA potentially substitutable by robots than the previous two methodologies, as

reported in Table 6 and Figure 14. This is used to construct the GPT shock in section 4.2.

To investigate why the results obtained with the LLM are magnitudes larger than with

the first two methodologies, we modify our first mapping along two dimensions. First, we

map tasks to robot applications without considering specific conditions, but including the

second search. This means we separate the action from the object. For example, we consider

the word ”cleaning” without conditioning it to specific contexts like ”windows” or ”floors”.

This approach results in a measure of robot substitutability that is substantially larger than

the one obtained when considering specific conditions, and more aligned with the results

obtained with the LLMs for low-skilled occupations. However, it is substantially larger for

high-skilled occupations.

Second, we neither consider specific conditions nor refine the analysis with a second

search. This means we use only generic terms for the mapping (e.g., welding or cleaning)

and assume robots can also perform higher-order skills, like supervising and administering,

as in the second methodology. This yields the largest share of IWA that can potentially be

performed by robots, although, again, the largest effect with respect to the previous method-

ology (map no condition but with second search) appears to be on high-skilled occupations.

Our analysis reveals that the methodology used to assess robot substitutability greatly

influences the outcomes. The design of these mappings plays a crucial role in determining

the extent to which robots can already perform specific tasks.
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Occupation Map with
condition and
second search

Map with
condition - no
second search

Map Chat
GPT

Map no
condition but
with second

search

Map no
condition no
second search

High Skill 0.01 0.03 0.15 0.41 0.54
Middle Skill 0.06 0.06 0.45 0.56 0.59
Low Skill 0.08 0.09 0.54 0.51 0.56

Table 6: Robots measures comparison

C Household Problem

In this appendix, we show that each agent i has the same amount of consumption at each

t, which we can denote by ct, and so that we can write the problem, as in the main text,

considering a unique consumption level for all agents i.

Recall that the household is made of a unit measure of agents, iϵ[0, 1], and each agent

has instantaneous utility,

ûi,t =
c1−ψi,t − 1

1− ψ
−Bi,kl

µ
i,t, (16)

where ci is consumption and li is the amount of labor that the agents provide to the house-

hold.34 Each agent has total lifetime utility given by:

ui =
∞∑
t=0

βtûi,t, (17)

and utility of the household is:

W =

∫ 1

0

uidi. (18)

By substituting (16) and (17) into (18), we can write:

W =

∫ 1

0

∞∑
t=0

βt

{
c1−ψi,t − 1

1− ψ
−Bi,kl

µ
i,t

}
di,

and by separating the arguments of the integral we obtain:

W =

∫ 1

0

{
∞∑
t=0

βt
c1−ψi,t − 1

1− ψ

}
di−

∫ 1

0

{
∞∑
t=0

βtBi,kl
µ
i,t

}
di.

34Note that, for reasons that become apparent below, we are indexing Bk also with the agent index i in
(16). However, all agents in the same occupation have the same Bk, that is Bi,k = Bi′,k for agents i and i′

working in the same occupation.
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We can now pass the integrals inside the sums to obtain:

W =

{
∞∑
t=0

βt
∫ 1

0

c1−ψi,t − 1

1− ψ
di

}
−

{
∞∑
t=0

βt
∫ 1

0

Bi,kl
µ
i,tdi

}
.

Considering that at time t: Nk,t agents work in occupation k; 1−
[∑J

k=1Nk,t

]
agents do not

work; and that two agents in the same occupation k work the same amount of time lk,t (if

not, the two agents have different disutility of labor, and the household can improve total

welfare by moving labor from one agent to the other) we can replace the integral on labor

using the fractions of workers in each occupation and the unemployment pool. Total utility

of the household becomes:

W =

{
∞∑
t=0

βt
∫ 1

0

c1−ψi,t − 1

1− ψ
di

}
−

{
∞∑
t=0

βt

[
J∑
k=1

Bkl
µ
k,tNk,t +

�����������

0 ∗

[
1−

[
J∑
k=1

Nk,t

]]]}
,

subject to the budget constraint at each t,

∫ 1

0

ci,tdi+ It ≤
J∑
k=1

wk,t
(
lk,t − lsk,t

)
Nk,t + pr,trt,

and the laws of motion for occupations size (3).

The Lagrangean for the problem is:

L =
∞∑
t=0

βt

{∫ 1

0

c1−ψi,t − 1

1− ψ
di−

[
J∑
k=1

Nkl
µ
kBk

]
+

−
J∑
k=1

∇k,t

[
Nk,t+1 − (1− κ)Nk

[
(1− γk) + Ψk(1−

J∑
i=1

Ni)
ϕk (lsk)

1−ϕk

]]
+

−λt

[∫ 1

0

ci,tdi+ rt+1 − rt(1− δ)− prtrt −
J∑
k=1

wk,tNk,t

(
lk,t − lsk,t

)]}
.

The FOC with respect to ci,t is:

δL

δci,t
= 0 ⇒ βtc−ψi,t = λt, (19)

which implies that, in equilibrium, all agents consume the same amount at each t, so ci,t =
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cj,t = ct. Thus, in the solution to the problem, it always holds that:

∫ 1

0

c1−ψi,t − 1

1− ψ
di =

c1−ψt − 1

1− ψ

and ∫ 1

0

ci,tdi = ct.

It follows that we can write the problem of the household as:

max
ct,lk,t,l

s
k,t,rt+1,Nk,t+1

W =
∞∑
t=0

βt

{
c1−ψt − 1

1− ψ
−

[
J∑
k=1

Bkl
µ
k,tNk,t

]}
,

subject to the budget constraint:

ct + rt+1 − rt(1− δ) ≤
J∑
k=1

wk,tNk,t

(
lk,t − lsk,t

)
+ pr,trt,

and the condition (3) for each k, as in the main text.

47


	Introduction
	Training Index 
	Model
	Household
	Firm
	Occupations
	Production

	Equilibrium

	Calibration and Estimation
	Estimating barriers 
	Shocks to j
	Predetermined parameters
	Calibrated Parameters

	Results
	Shocks to tasks performable by robots
	What's different from the past? A comparison with CETC
	What's different from the past? The role of barriers

	Conclusions
	Training Index
	Future Tasks
	Household Problem

