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Abstract

We investigate the ability of workhorse structural change models in accounting for

the business cycle properties of an economy. We consider three different preferences

specifications: Herrendorf, Rogerson and Valentinyi (2014, HRV), Boppart (2014), and

Comin, Lashkari and Mestieri (2021, CLM), paired with standard sectoral production

functions with random total factor productivity (TFP) shocks. In each case, we esti-

mate preference parameters using long-run structural change data, and common TFP

processes calibrated on observed relative prices. Our main results can be summarized

by: i) all models display a volatility of aggregate variables substantially lower than the

data, but they account for a large fraction of the volatility of consumption relative to

GDP; ii) at the sectoral level, only CLM accounts for a substantial fraction of absolute

and relative volatility; iii) all models do reasonably well in accounting for the cyclical-

ity of aggregate GDP components; and iv) only HRV can account for the cyclicality of

sectoral variables.
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1 Introduction

In this work, we investigate the ability of workhorse structural change models in account-

ing for business cycle properties of an economy. Typically, structural change in general

equilibrium is generated by assuming specific functional forms for preferences. Such pref-

erences induce structural change either through a non-unitary elasticity of substitution of

consumption components that drives a reallocation of resources across sectors as relative

prices change, and/or through heterogeneous non-homothetic components of the various

goods and services entering the utility function.1 The most successful models in accounting

for the observed sectoral reallocation include Herrendorf, Rogerson, and Valentinyi (2014)

(HRV henceforth), which encompasses the specifications in Kongsamut, Rebelo, and Xie

(2001) and Ngai and Pissarides (2007) as special cases; Boppart (2014) (BOP); and Comin,

Lashkari, and Mestieri (2021) (CLM).2 The key difference across these models is given by

the specification of preferences. While they can all account well for the long-run properties

of structural transformation in U.S. data, their ability to replicate the short-run properties

along the growth path remains unexplored. This is the focus of this paper.

There a two main reasons why our exercise is of interest. First, modern business-cycle

theory is grounded on the view that cycles are“oscillations of output and prices about a trend

path” (Lucas, 1975), suggesting that a theory of the cycle should be embodied in a broader

theory that can account for the trend (Cooley and Prescott, 1995). The one-sector exogenous

growth model is succesful in providing such a theory: given permanent TFP changes, the

model accounts well for the main growth facts; given stochastic and transitory TFP changes,

the model accounts reasonably well for the main business-cycle facts. Structural change

models are extensions of the one-sector growth model that account for additional facts of

the growth process (i.e. structural transformation). Thus, a theoretical question is whether

a unified theory of growth and cycles also exists for this class of models.

The second reason stems from practical considerations. There is a growing interest in

the literature regarding the use of structural change models to explore phenomena over the

1Both channels have been shown to drive structural change in the data, with proportions that can vary
depending of the preference specification. Income effects account for a proportion between 50% (Boppart,
2014) and 75% (Comin, Lashkari, and Mestieri, 2021) of structural transformation in the U.S. See Herrendorf,
Rogerson, and Valentinyi (2014) and Moro and Valdes (2021) for a discussion of the two channels.

2More recently, Alder, Boppart, and Müller (2022) has added to this group. They characterize a flexible
general class of preferences for which aggregate expenditure and saving are independent of inequality and show
that these preferences account well for historical structural transformation in expediture in U.S., the U.K.,
Canada, and Australia. While these preferences perform very well in terms of structural transformation, we
do not investigate their business-cycle properties due to the substantially larger number of parameters with
respect to the other type or preferences we consider. See also Bohr, Mestieri, and Robert-Nicoud (2023),
who show that a class of preferences which they label “heterothetic Cobb-Douglas” can generalize the results
in Kongsamut, Rebelo, and Xie (2001).
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short term. This highlights a growing recognition of the importance of considering the long-

term evolution of the economy when dealing with business-cycle frequency issues. These

contributions typically involve quantitative analyses incorporating various elements into the

structural change block of the model to align it with the specific facts it aims to explain.

However, the literature currently lacks a benchmark outcome, leaving the cyclical properties

of the fundamental framework of structural transformation unestablished. Our work offers

a reference point for researchers looking to apply these models in targeted studies.

Given the above considerations, our main interest is to follow as closely as possible,

in accordance with the features of each model, the real business cycle (RBC) literature,

by positing that the stochastic block of the economy is given by sectoral stochastic TFP

processes. We thus introduce the same stochastic structure in all models, and determine the

value of the relevant parameters by using data on relative prices. This allows us to compare

business cycles under different preference specifications when the model economies fit the

long-run structural transformation and the stochastic block is common across models.

A non-trivial complication of the analysis is that the solution of stochastic structural

change models requires solving for the entire stochastic growth path. This happens because,

under general conditions, growth in structural change models is unbalanced.3 This implies

that we cannot rely on traditional approaches that focus on a steady state or a balanced

growth path (BGP) and compute deviations from the non-stochastic trend. To address this

we resort to the method proposed in Fair and Taylor (1983), the Extended Path Method,

which allows to solve for the whole stochastic growth path.4

In line with the RBC literature, we analyze both volatility and cyclicality (i.e. correlations

with GDP) statistics, at the aggregate and at the sectoral level. We report four main results.

First, we investigate the ability of the models to reproduce the volatility of aggregate variable

observed in the data. We find that in all models this is substantially lower than in the data

and in the standard one-sector RBC model. For instance, HRV accounts for 55% of GDP

volatility, BOP for 45% and CLM for only 28% of it. However, all models do reasonably well

3The literature discusses how some structural change models may display balanced growth when mea-
sured in terms of a numeraire good, and unbalanced growth when measured in line with NIPA conventions
(see Leon-Ledesma and Moro, 2020 and Duernecker, Herrendorf, and Valentinyi, 2021). Here we refer to
theoretical unbalanced growth in terms of the numeraire good. See Buera, Kaboski, Mestieri, and O’Connor
(2020) for an algorithm to solve deterministic structural change models outside theoretical balanced growth
paths.

4Notable exceptions which do not resort to local methods are Cagliarini and Kulish (2013) and Maliar,
Maliar, Taylor, and Tsener (2020), who develop solution methods designed for cases in which there are
exogenous, deterministic structural changes, like a change in policy. In our case, structural transformation
happens endogenously given the rate of growth of TFP. Notwithstanding, Storesletten, Zhao, and Zilibotti
(2019) apply Cagliarini and Kulish (2013) algorithm in a stochastic environment. A necessary condition for
this algorithm is that there is long run convergence to a steady state or BGP. The extended path used in
our paper does not require such assumption.
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in accounting for the relative volatility of consumption to GDP.

In terms of sectoral volatilities, we consider the absolute and relative performance of the

models. CLM is the only model providing a good account of absolute volatilities in the data.

It can explain 75% of the volatility of goods consumption and 65% of the volatility of services

consumption in the data. HRV displays numbers that are substantially smaller than in the

data, while BOP matches the volatility of services but displays a volatility of goods which

is substantially smaller than the data. In terms of relative volatilities, we focus on a robust

observation in the data which is that goods consumption is more volatile than services. Moro

(2015) discusses how Stone-Geary preferences can display a tension between the ability to

account simultaneously for long-run structural change and for the relative volatility of goods

and services in the data. We investigate whether such tension emerges as a general feature

of structural change models. Indeed, HRV displays that services consumption is extremely

more volatile than goods consumption, confirming the results in Moro (2015). BOP shows a

similar outcome. CLM, instead, produces a resonable 39% for the ratio of volatilities between

services and goods, close to the ratio in the data, equal to 44%.

In terms of the cycle, all models do reasonably well in accounting for the cyclicality of

aggregate GDP components. Both aggregate consumption and investment display a large,

positive correlation with GDP. However, things are substantially different when looking

at the cyclicality of sectoral variables. In terms of sectoral consumption and sectoral labor

cyclicality, only HRV shows a good accounting of the data. It also performs well in accounting

for the cyclicality of aggregate labor, something that the other two models cannot do. BOP

accounts for only 33% of the correlation of labor and GDP, while CLM displays a small

negative correlation.

Our paper relates to the growing number of contributions showing that the composi-

tion of an economy can have effects that are observable at the business cycle frequencies.

Da-Rocha and Restuccia (2006) use a model with agriculture and non-agriculture sectors to

show that the size of the employment share in agriculture can account for a large fraction of

the differences in the magnitude of aggregate output volatility across countries. Similarly,

Moro (2012) models an economy displaying structural transformation between manufactur-

ing and services and finds that in the calibrated model the rise of the value added share of

services can account for 28% of the decline in aggregate output volatility observed in the

U.S. after 1980, while Moro (2015), in the context of a similar model, finds that structural

transformation can account for at least 83% of the larger output volatility in middle-income

relative to high-income economies. Carvalho and Gabaix (2013) perform a volatility account-

ing exercise for the U.S. and show that aggregate output volatility can be traced back to the

change in size of the various sectors in the economy that display heterogeneous volatilities.
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Yao and Zhu (2021) use a two-sector model to show that the absence of employment-output

correlation in China is due to the large size of the agricultural sector in that country, while

Storesletten, Zhao, and Zilibotti (2019) provide a stochastic model displaying an acceler-

ation of structural change in booms and a deceleration in recessions. Galesi and Rachedi

(2019) show that structural transformation between manufacturing and services in a New-

Keynesian framework induces an increase in the share of services in intermediate goods used

in the economy, which dampens the response of inflation to monetary policy shocks. Finally,

Moro and Rachedi (2022) study a model where a decline of the public-sector relative produc-

tivity drives a changing structure of government spending, which modifies the transmission

mechanism of government spending shocks. We add to this literature by assessing the abil-

ity of the most commonly used theories of structural change to account for business cycle

properties of an economy.

The remainder of the paper is as follows. Section 2 describes the stochastic versions of

the three multi-sector growth models we consider, and in section 3 we describe the solution

algorithm. Section 4 describes the calibration, while section 5 presents the quantitative

results. Section 6 concludes.

2 Theoretical Framework

In this section we describe the demand and supply sides of our setting. Time is discrete and

there are two sectors in the economy: goods (g) and services (s). There are two representative

firms, each producing one of the consumption goods. We also adopt the convention that

investment is an aggregate of goods and services as in Herrendorf, Rogerson, and Valentinyi

(2021) and Garćıa-Santana, Pijoan-Mas, and Villacorta (2021). For the demand side, we

consider three different preference specifications: i) Herrendorf, Rogerson, and Valentinyi

(2014), ii) Boppart (2014) and iii) Comin, Lashkari, and Mestieri (2021). Consistently with

the RBC literature, we add leisure to these preferences. The production structure follows

the standard convention of assuming a Cobb-Douglas prodution function in each sector,

with the capital share identical across sectors. Once again following the RBC convention, we

introduce (sector specific) TFP shocks as the only stochastic component of the environment.

2.1 Households

In this subsection we describe the three types of preferences that we analyze. For each of

them, we consider an expected utility specification by introducing the expectations operator

E. There is a representative household owning the stock of capital, which is rented out in
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the market. The capital stock K evolves according to

Kt+1 = (1− δ)Kt +Xt,

where δ ∈ [0, 1] is the rate of depreciation and Xt is the amount of investment chosen by the

household for time t. Following Herrendorf, Rogerson, and Valentinyi (2021), the investment

good is obtained by combining output of the goods and the services sectors according to the

CES aggregator:

Xt = ezxt
(
ω

1
ϵx
x X

ϵx−1
ϵx

gt + (1− ωx)
1
ϵxX

ϵx−1
ϵx

st

) ϵx
ϵx−1

, (1)

where the weights ωx and 1−ωx denote the relative importance of sector j = g, s and ϵx > 0

is the elasticity of substitution, while zxt is a deterministic investment-specific TFP term.

The representative household owns an amount of labor h̄ each period and decides how

much to supply to the market in exchange for a wage wt. Denoting with pjt the price of each

good for j = g, s, with pxt the price of investment, and with rt the rental rate of capital, the

period t budget constraint of the household is

pgtcgt + pstcst + pxtXt = wtht + rtKt, (2)

where cjt is period t consumption of good j = g, s, and ht is the amount of labor supplied.

We next introduce the preference specification for each model.

2.1.1 Herrendorf, Rogerson and Valentinyi (2014)

Herrendorf, Rogerson, and Valentinyi (2014) (HRV henceforth) propose a demand setting

based on Stone-Geary preferences that nests Kongsamut, Rebelo, and Xie (2001) and Ngai

and Pissarides (2007) as special cases. The intertemporal utility is given by

U = E
∞∑
t=0

βt

[
C1−τ

t

1− τ
+ νt

(h̄− ht)
1−γ

1− γ

]
,

where

Ct =

[
ω1/µc

µ−1
µ

gt + (1− ω)1/µ(cst + c̄)
µ−1
µ

] µ
µ−1

, (3)

The weights ω and 1 − ω denote the relative importance of sector j = g, s, τ is the

relative risk aversion, and µ > 0 governs the elasticity of substitution. The term c̄ introduces

a non-homothetic component, while γ governs the Frisch elasticity. Note that, to allow labor

supply to be constant along the deterministic growth path we need to allow the disutility of
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labor νt to change over time, as in Moro (2012).5

2.1.2 Boppart (2014)

Boppart (2014) (BOP henceforth) proposes an intratemporal indirect utility function that

belongs to the “price independent generalize linearity” (PIGL) class of preferences. The

intertemporal utility is given by

U = E
∞∑
t=0

βt

[
V (pgt, pst, Et) + νt

(h̄− ht)
1−γ

1− γ

]
,

where

V (pgt, pst, Et) =
1

ϵ

(
Et

pst

)ϵ

− φ

η

(
pst
pgt

)−η

− 1

ϵ
− φ

η
,

is an indirect utility function of cgt and cst with 0 ≤ ϵ ≤ η ≤ 1 and φ > 0. Et is

consumption expenditure on goods and services. The parameter ϵ governs the evolution of

the expenditure share of services, ϵ and η jointly govern the elasticity of substitution between

services and goods, while φ is a shift parameter. Note that in this setting, we have a period

utility given in part by an indirect utility function in expenditure and prices of goods and

services, and in part by a direct utility function in labor. The dynamic problem of the

household is still well specified, with the two control variables in the dynamic problem being

Et and ht, and the budget constraint (2) is given in this case by

Et + pxtXt = wtht + rtKt.

As in Boppart (2014), once Et is determined in the dynamic problem, Roy’s identity can be

used to find the levels of cgt and cst.

2.1.3 Comin, Lashkari and Mestieri (2021)

Comin, Lashkari, and Mestieri (2021) (CLM henceforth) introduce a utility function that

belongs to a class of preferences defined as non-homothetic constant elasticity of substitution

(CES) preferences. The intertemporal utility is

U = E
∞∑
t=0

βt

[
C1−τ

t

1− τ
+ νt

(h̄− ht)
1−γ

1− γ

]
,

5We adopt the same convention for all models.
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as in HRV. However, here aggregate consumption Ct is defined implicitly as follows[
ψ1/σ
g C

ϵg−1

σ
t c

σ−1
σ

gt + ψ1/σ
s C

ϵs−1
σ

t c
σ−1
σ

st

] σ
σ−1

= Ct,

where we are using the specification in Duernecker, Herrendorf, and Valentinyi (2023) and

Duarte and Restuccia (2023). The weights ψg and ψs denote the relative importance of

sector j = g, s in consumption, ϵg and ϵs govern the income elasticities of the two types of

consumption, and σ ≥ 0 controls the elasticity of substitution between goods and services.

2.2 Firms and Market Clearing

Each good j is produced in sector j with a technology that employs as inputs capital and

labor. Such technology is given by

Yjt = ezjtKα
jtL

1−α
jt , 0 ≤ α ≤ 1, j = g, s,

where Kjt and Ljt are capital and labor used in sector j and zjt is a sector-specific stochastic

TFP term. We retain the convention of several structural change models in assuming that

the capital and labor shares are identical in all sectors of the economy.

Feasibility requires the following market clearing conditions at any t:

Ygt = cgt +Xgt, Yst = cst +Xst, Kt =
∑
j=g,s

Kjt, ht =
∑
j=g,s

Ljt.

2.3 Stochastic Processes

The evolution of technology in each sector j, zjt, is given by the sum of a first order autore-

gressive process, plus a deterministic component that grows with time. More specifically,

zgt = ggt+ ẑgt, ẑgt = ρgẑgt−1 + ϵgt, ϵgt ∼ N(0, σ2
g)

zst = gst+ ẑst, ẑst = ρsẑst−1 + ϵst, ϵst ∼ N(0, σ2
s)

where gj is a deterministic trend, ρj is the autoregressive parameter, and σ2
j is the variance

of shocks ϵjt for each sector j = g, s. Perfect competition implies that relative prices are

uniquely determined by TFP. More precisely, taking the price of goods as the numeraire at

each t, we have
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pgt = 1, pst = ezgt−zst .

These equations allow us to estimate the parameters governing the stochastic component

of TFP independently of the choice of preferences, making our results comparable across

models.

3 Solving the models

There is no standard procedure for solving stochastic structural change models along the

transition path. Under general conditions, structural change implies an unbalanced growth

path, and this property prevents the use of local solution techniques when uncertainty is

introduced, requiring the adoption of global methods.6 We adopt the methodology proposed

by Fair and Taylor (1983), the Extended Path Method. This method consists in first finding

a deterministic dynamic equilibrium of the model over the period of interest. In practice, if

the last period of interest is denoted T0, the algorithm extends the period of analysis by ∆T

periods, so that the deterministic dynamic equilibrium is found until period T1 = T0 +∆T .

The second part of the algorithm computes the stochastic path given the expectation of the

different shocks. In particular, the assumption is that, for any shock occurred up to time T0,

the economy rests in the deterministic equilibrium in period T1. Thus, the size of ∆T must

be large enough so that this does not affect the equilibrium in the interval between 0 and

T0. We provide more details of the methodology next.

3.1 Deterministic Path

To find the deterministic path, we use a “shooting algorithm”.7 Similarly to a one-sector

growth model, the solution implies solving a second order difference equation subject to two

boundary conditions: an initial condition for the capital stock, and a transversality condition

holding at t → ∞. Typically, in a standard one-sector growth model, the transversality

condition is replaced with a steady state level for capital as t → ∞. However, our models

do not necessarily have a steady state, so we need to impose the transversality condition as

a boundary condition. A complication is then that this condition should be satisfied only as

6Among the preferences specifications we consider, only Boppart (2014) allows the existence of a balanced
growth path with a finite capital stock and constant sectoral TFP growth. The preferences in Herrendorf,
Rogerson, and Valentinyi (2014) admit a balanced growth path with finite capital stock and constant sectoral
TFP growth only in the special cases described in Kongsamut, Rebelo, and Xie (2001) and Ngai and Pissarides
(2007).

7See Ljungqvist and Sargent (2004), chapter 11, for details of the algorithm.
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t → ∞, which cannot be computed numerically. Consequently, we approximate ∞ with T1

and evaluate the transversality condition in that period.

3.2 Stochastic Path

After successfully finding the deterministic path, we compute the stochastic path. The

key assumption the Extended Path method relies on is approximating the expectation of a

function with a function of the expectations.8 In practice, we use the shooting algorithm

repeatedly, each time under different (known) sequences of shocks, with the constraint that

the equilibrium allocation should coincide with the deterministic path in period T1.

In practice, the method works as follows. Starting in period 0, we observe the realization

of the shocks (i.e. innovations ϵg0 and ϵs0). This allows us to compute the expectation of ẑjt’s

in all future periods t = 1, . . . , T1. As innovations have zero mean, the expectation at time

0 is that the ẑjt’s will mean revert to zero following their autoregressive processes over time.

These processes are then treated as deterministic sequences from the standpoint of time 0.

It follows that we can use the shooting algorithm to compute the equilibrium allocation until

T1 given k0 and this sequence of ẑjt’s. From this dynamic equilibrium we save decision rules

for consumption and investment in period 0. Next, we move on to period 1. Notice that k1 is

known at this point. We obtain new realizations for the stochastic processes (i.e. innovations

ϵg1 and ϵs1). Given these realizations, we compute the expected ẑjt’s for t = 2, . . . , T1. Given

these, we again use the shooting to compute the equilibrium allocations assuming the ẑjt’s

will deterministically go back to zero over time and save the decision rules for consumption

and investment in period 1.

We continue until period T0 is reached. In this way, the decision rule for period t ≤ T0

is the equilibrium allocation obtained in the step that starts in period t. This illustrates the

importance of choosing a large enough ∆T . A small value would bias the results, since it

would affect the decision rules in periods t ≤ T0. A large ∆T avoids this problem.9

4 Parameter Values and Measurement

This section describes how we assign values to the parameters in the model and how we

compute aggregate variables in the models in a way that allows comparison with the data.

8Note that this approximation is perfect only when the functions are linear, which is typically not the
case. However, this assumption is similar to what most RBC models employ to approximate the rational
expectation equilibrium, using first order Taylor expansions.

9We follow the methodology in Fair and Taylor (1983) to select ∆T : this is chosen such that adding one
more period would not change the equilibrium until period T0 in a substantial way.
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Given that our theoretical setup is similar, we closely follow the two-by-two data treatment in

Herrendorf, Rogerson, and Valentinyi (2021), who combine U.S. industry data from WORLD

KLEMS (value added, factor shares and factor inputs) with input–output tables from the

Bureau of Economic Analysis.

Pre-determined parameters: One period in the model represents one year in the data.

Consequently, we use standard values for the following parameters when one period is one

year: the capital depreciation rate is δ = 0.08, and the subjective discount factor is β = 0.96.

In addition, following standard practices we set the capital share α = 1/3 and the value of

the relative risk aversion τ = 3 in HRV and CLM.10

Preference parameters for consumption: We estimate preference parameters as in Her-

rendorf, Rogerson, and Valentinyi (2013) by using iterated feasible generalized nonlinear least

square estimation.11 The equations to estimate are all derived in the papers that introduce

those preferences. For convenience, we re-write them here. Let ηjt denote the share of expen-

diture on sector j = g, s at time t. This is observable in the data, along with relative prices

and expenditures. In all models, these shares are functions of the parameters, prices, and

expenditures. Note, however, that shares add up to one, so that we cannot estimate both

equations due to linear dependency, and we perform the estimation of only one equation.12

The following equation corresponds to equation (14) in Herrendorf, Rogerson, and Valentinyi

(2013) for our case with two sectors:

ηst =
1−ω
ω
p1−µ
st − pstc̄/Et

1 + 1−ω
ω
p1−µ
st

.

For BOP we estimate

ηst = 1− φE−ϵ
t pϵ−η

st .

In the case of CLM, we are adopting the specification in Duernecker, Herrendorf, and

Valentinyi (2023) and Duarte and Restuccia (2023). Appendix B derives the following ex-

pression for estimation:

log

(
ηs
ηg

)
= log

(
Ψs

Ψg

)
+
ϵs − ϵg
ϵg − σ

[log(ηg)− (σ − 1) log(E)− log Ψg] + (1− σ) log(ps). (4)

10A relatively large value of τ guarantees finding a solution in CLM given our computational algorithm.
See Appendix A for details. We then use the same value for HRV.

11Deaton (1986).
12The choice of the equation is irrelevant for the estimation purposes.
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As in Comin, Lashkari, and Mestieri (2021) we normalize ϵg = Ψg = 1 to obtain

log

(
ωs

ωg

)
= log (Ψs) +

ϵs − 1

1− σ
log(ωg) + (ϵs − 1) log(E) + (1− σ) log(ps).

We estimate equation 4 by imposing ϵs = σ.13

The estimated parameter values are reported in the top panel of Table (1). In what follows

we compare the values we obtain with other calibrations and estimations in the literature in

a similar context.

Our estimates for HRV are µ = 0.19, ω = 0.13 and c̄ = 1.80. Similar preferences are

calibrated in Moro (2012) for the U.S. for the 1960-2005 period. He obtains 1.27 for the

non-homotetic term c̄, and a small value (0.000023) for the weight of goods ω. Also, he

follows Rogerson (2008) and Duarte and Restuccia (2010) in imposing a value of µ of 0.4

which implies that consumption of goods and consumption of services are complement, as in

our estimate. It is worth highlighting that finding c̄ > 0 implies that there is a subsistence

level of consumption in goods, so that, given a low level of income, a large proportion of it

will be spent on goods. As income increases, the proportion spent on goods loses ground to

that of services.

The values we obtain for BOP are ϵ = 0.56, η = 0.67 and φ = 0.37. Boppart (2014)

provides estimates obtained with micro data of the the first two parameters, given by 0.22 for

ϵ and 0.41 for η. Leon-Ledesma and Moro (2020) instead use macro data to calibrate BOP

for the U.S. using the 1951-2015 period and obtain ϵ = 0.22, η = 0.51 and φ = 0.64. All

exercises report values that are fairly close to each other. To have a better understanding

of their meaning, it is convenient to write down the demand for goods implied by these

preferences:

cgt = φE1−ϵ
t pϵ−η

st

Our estimates for ϵ are somewhat larger than the other papers mentioned, implying a stronger

income effect in our model than in the other works. The difference ϵ−η is −0.11 in our case,

similar to that in Boppart (2014) and somewhat smaller in absolute value (but of the same

sign) than Leon-Ledesma and Moro (2020).

Finally, we obtain the following estimates for CLM: σ = 1.27, ϵs = 1.27, ψs = 0.66, plus

the normalized ϵg = ψg = 1. A recent paper by Duarte and Restuccia (2023) calibrates a

13Without imposing ϵs = σ, we obtain estimates σ = 1.11 and ϵs = 1.12. While the estimated values
of the two parameters are close, the shooting algorithm used to solve the model with the extended path
methodology fails due to non-monotonicities in some components of the Euler equation. For these reasons,
we impose ϵs = σ in the estimation procedure, obtaining a value of 1.27 for both parameters. While this is
slighly larger than the values of the two parameters obtained in the unconstrained estimation, the value of
Ψs is also slightly different with respect to that case. See Appendix A for details.
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two-sector model in goods and services with CLM preferences for the U.S. for the period

1960-2000. They calibrate the difference in income effects to ϵs − ϵg = 1, while we obtain

a difference of 0.27. In addition, while they do not normalize ψg = 1, they calibrate the

ratio ψs/ψg = 0.69, while we have 0.66/1 = 0.66. Finally, they impose a value of σ = 0.1,

while our estimate gives a substantially larger value of 1.27. Thus, our estimation of CLM

implies that goods and services are relative substitutes in the utility function, something in

contrast with previous estimates in Comin, Lashkari, and Mestieri (2021) and Duernecker,

Herrendorf, and Valentinyi (2023) in the context of three-sector models.14

Table 1: Parameter values across models

HRV BOP CLM

Value S.E. Value S.E. Value S.E.

µ 0.1931 (0.0929) ϵ 0.5567 (0.0375) σ 1.2702 (0.0076)

ω 0.1326 (0.0134) η 0.6698 (0.0715) ϵs 1.2702 (0.0076)

c̄ 1.8012 (0.2884) φ 0.3673 (0.0029) ψs 0.6608 (0.0038)

ϵg 1 (-)

ψg 1 (-)

Value Target Value Target Value Target

γ 0.21 Volat. of L γ 0.12 Volat. of L γ 0.24 Volat. of L

ν0 0.0467
Const. L

ν0 1.0211
Const. L

ν0 0.0016
Const. L

νT1 0.0183 νT1 2.0604 νT1 1.3E − 07

Value Target Value Target Value Target

gg 0.0148 ηs1947 gg 0.0145 ηs1947 gg 0.0121 ηs1947
gs 0.0070 gps gs 0.0068 gps gs 0.0044 gps
k0 2.3810 ηs2014 k0 2.7992 ηs2014 k0 0.5011 ηs2014

Note: ηs1947 and ηs2014 are the shares of services in consumption in the data in the two
years. gps is the average growth rate of the relative price of services to goods in the data in

the sample period 1947-2014.

Preference parameters for labor/leisure: We calibrate γ such that each model matches

an average volatility of aggregate labor as in the data, which is 2.22%. For νt we impose

a time sequence ensuring that, along the deterministic growth path, the supply of labor in

the market is 1/3 of total time of the household at each time t. We set the total labor

endowment each period h̄ = 3, so that in the deterministic equilibrium labor supply equals

14The fact that the estimate for σ is larger than one does not depend on imposing the constraint σ = ϵs
or the normalization ϵg = Ψg = 1.
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1 each period. This implies a declining value for νt in HRV and CLM and an increasing one

in BOP. The middle section of Table (1) reports the initial and the final value of νt for each

model.

Initial capital and TFP growth: Assume we know the values of k0, gg, and gs. Given the

pre-determined parameters and the preference parameters, we can solve for the deterministic

equilibrium path that satisfies k0 and the transversality condition. To pin down values for

k0, gg, and gs we use the following targets: i) the share of services in consumption in the

initial year (1947), ii) in the final year (2014), and iii) the growth in the relative price of

services between 1947 and 2014, as in equilibrium pst = ezgt−zst . The bottom section of Table

(1) reports these parameter values for each model.

Parameters of the investment function: From Herrendorf, Rogerson, and Valentinyi

(2021), we observe that the price of investment relative to goods does not display a clear

trend over time.15 We thus compute the average value over the sample, obtaining 1.13, and

impose that the model matches that target in each period of the deterministic transition (i.e.

that there is no trend in the relative price of investment to goods along the growth path, as

in the data). We then note that in all models the price can be written as

Pxt =

[
ωx + (1− ωx)P

1−ϵx
st

ezxt(1−ϵx)

]1/(1−ϵx)

.

Imposing that Pxt = 1.13 at each t, we can use the above formula together with the time

series of the relative price of services Pst to back out the sequence of zxt. In Table 2 we report

the average value of zxt, which implies a value of the “productivity” term in the investment

function ezxt = 0.98.

Next, from the first order conditions of the cost minization problem of investment we can

write, after taking logs, the following expression

log
pstXst

Xgt

= (1− ϵx) log pst + log
1− ωx

ωx

. (5)

Equation (5) can be estimated via OLS using the investment share of services relative to

goods and the relative price of services to goods to obtain values for ϵx and ωx.
16 Note that

all parameters of the investment function are common across models. Herrendorf, Rogerson,

and Valentinyi (2021) estimate equation (5) obtaining the values of ϵx and ωx that we report

in Table 2, which we use in our simulations.

15See Figure 2 in Herrendorf, Rogerson, and Valentinyi (2021).
16The composition of investment is decided by the household in her maximization problem. However, the

resulting input composition is equivalent to that obtained by minimizing the cost of producing one unit of
investment, which we exploit here.
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Table 2: Parameter values for Investment

Parameter Value Source
z̄x 0.0136 Target px
ϵx 0.0002 OLS
ωx 0.6482 OLS

Note: z̄x is the average value along the transition path of zxt.

TFP Processes: To calibrate the parameters ρg, ρs, σg, σs we estimate AR(1) processes

using data on real sectoral output, sectoral employment and sectoral capital. We proceed as

follows:

1. Compute the growth rate of sectoral TFP. We do this by log-linearizing production

functions as follows:

gjt = log(zjt − zjt−1) = log

[
Yjt
Yjt−1

]
− α log

[
Kjt

Kjt−1

]
− (1− α) log

[
Ljt

Ljt−1

]
, j = g, s.

2. Detrend the series for these growth rates with a linear trend. We use a linear trend be-

cause the theoretical trend is linear in logs. The linear trend is computed by estimating

the following regression using OLS:

gjt = a0 + a1t

3. Compute the residuals as

rjt = gjt − â0 − â1t

where â0 and â1 are the estimates of a0 and a1, respectively.

4. Estimate the following autorregressive process:

rjt+1 = ρjrjt + ϵjt, j = g, s, ϵ ∼ N(0, σ2
j ).

Table 3 reports parameter values. The estimated autoregressive parameters are ρg = 0.91

and ρs = 0.96. These are in line with estimates in Moro (2012), in the context of a similar

two-sector split of the economy. The volatility estimates imply that the stochastic component

of goods TFP is more volatile than its services counterpart. Conditional on current TFP, the

volatility of next period’s TFP is twice as large in goods than in services (0.0227/0.0111). The

unconditional variance in goods (σ2
g/(1−ρ2g) = 0.0029) is also larger than in services (σ2

s/(1−ρ2s) =

15



Table 3: Estimated TFP processes

Parameter Estimated Value S.E.
ρg 0.9063 (0.0472)
ρs 0.9584 (0.0378)
σg 0.0227 (0.0021)
σs 0.0111 (0.0010)

0.0015). This is consistent with goods being more volatile than services in the data, and

again consistent with the estimated volatility of sectoral shocks in Moro (2012).17

Measurement: An issue that arises in multi-sector growth models is how to compute

aggregate variables so that they can be compared with the data. In some models, aggregate

consumption is explicitly defined (as in HRV), in some others it is implicitly definced (as in

CLM) while in others it is not defined at all (BOP). In the data, aggregate consumption and

GDP are measured using chain-weighted Fisher indices. This index can also be constructed

from the model, using equilibrium quantities and prices of the various sectors. The literature

suggests this is the best way to compare aggregate outcomes in multi-sector growth models

to the data.18 We thus follow this methodology for each model. To construct real GDP, we

use a chain-weighted Fisher quantity index of goods and services value added (i.e. output of

the two sectors). To construct real aggregate consumption we use a chain-weighted Fisher

quantity index of goods consumption and services consumption value added (i.e. output of

the two sectors). The investment index is defined in the same fashion within each model by

equation (1). We use its equilibrium values to compute business cycle statistics for investment

in the model.

Figure 1 reports the fit in terms of GDP, consumption and investment in the average

of 1,000 simulations. All models account reasonably well for the evolution of the three

macro-variables along the growth path.

17We also estimated AR(1) processes allowing for a cross-correlation of shocks. When feeding the models
with these processes instead of the ones described in the main text, results do not change considerably with
respect to those presented in Section 5. This is due to the low estimated correlation of innovations. This
confirms the finding in Carvalho and Gabaix (2013) that the average correlation in TFP innovations across
different sectors in the U.S. is very small and likely to be due to measurement error and factor hoarding.

18See Leon-Ledesma and Moro (2020) and Duernecker, Herrendorf, and Valentinyi (2021).
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Figure 1: GDP, Consumption and Investment along the growth path. Averages across 1,000

simulations.
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Figure 2: Structural change in a stochastic environment. Top: HRV; middle: BOP; bottom:

CLM. The best performing simulation among all simulations is given by the one that minimizes

the sum of square differences between model and data in the share of goods along the growth path.
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5 Results

For each model, we perform 1,000 simulations that generate a sequence of TFP shocks

in each sector and then compute average business cycle statistics across simulations. We

first assess the ability of the models in accounting for structural change in the stochastic

environment. Figure 2 shows the evolution of the value added share of goods for one of the

1,000 simulations (dashed lines), together with the corresponding figures in the data (solid

lines). For each model, all simulations perform similarly in terms of long-run structural

change.19 The good performance of the models in replicating long-run-structural change is

well know from the original works of Herrendorf, Rogerson, and Valentinyi (2013), Boppart

(2014) and Comin, Lashkari, and Mestieri (2021). Here we confirm that a stochastic version

of the model also fits structural change data closely. We next present the results, organized

into two subsections. The first studies the volatilities generated by the models. The second

studies cyclicality, that is, the co-movement of the different series with GDP.

5.1 Volatility

We start by investigating volatility statistics, first focusing on aggregate variables, whose

performance is directly comparable to that in a one-sector business cycle model, and then

turn to discuss sectoral statistics. Table 4 reports standard deviations for the residual com-

ponent in the three specifications of the stochastic environment that we analyze and for the

data.20 In terms of absolute volatilities, all models display a substantially lower volatility of

consumption, investment and GDP with respect to the data. Results for GDP, for instance,

go from 55% of the volatility in the data for HRV, to only 28% in CLM, with BOP in the

middle. For comparison, the standard one-sector growth model accounts for roughly 78% of

U.S. GDP volatility in Cooley and Prescott (1995).

In terms of relative volatilities, a well known feature of business-cycles statistics is that

investment is more volatile than GDP in the U.S., which in turn is more volatile than

consumption. All three models are consistent with investment being the most volatile com-

ponent. HRV and CLM also display a volatility of GDP larger than consumption, while

BOP fails in this dimension. Regarding specific ratios, in the data consumption displays

76% of the volatility of GDP. In HRV consumption shows 58% of GDP volatility and in

CLM it shows 69% of it. Thus, both models account for a substantial fraction of relative

19In Figure 2 we report the simulation which is closest to the data when using the sum of square differences
as a measure of distance. However, most simulations display a similar pattern.

20We construct statistics as follows. First, we take logarithms of the data and detrend using a Hodrick-
Prescott (HP) filter with smoothing parameter 100 (annual data). For the series produced by the model we
also take logs and detrend using the HP filter with smoothing parameter 100.
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consumption volatility. BOP, on the other hand, displays a volatility of consumption which

is similar to that of GDP. Investment instead, is 2.36 times more volatile than GDP in the

data. The best performance here is given by BOP, which displays a 1.84 larger volatility of

investment relative to GDP. Both HRV and CLM overshoot substantially this statistic (3.93

and 6.12, respectively).

Consider next sectoral consumption volatility. In terms of absolute volatilities, HRV

displays numbers that are substantially smaller than in the data, while BOP matches the

volatility of services but displays a volatility of goods one order of magnitude smaller than the

data. CLM instead, does a resonable job in accounting together for 75% of the volatility of cm

and 65% of the volatility of cs in the data. Thus, in terms of absolute sectoral consumption

volatilities this is the only model providing a reasonable account of the data.

Perhaps more important than absolute volatilities is the ability of the models to account

for relative volatilities across sectors. A robust observation in the data is that goods con-

sumption is more volatile than services.21 However, Moro (2015) discusses how Stone-Geary

preferences, like the ones in HRV, display a tension between the ability of the model to

account simultaneously for long-run structural change and for the relative volatility of goods

and services in the data. Table 4 allows us to investigate whether such tension between

the long- and short-run properties emerges also in other structural change models. In the

data, services consumption is only 44% as volatile as goods consumption. In HRV, services

consumption is considerably more volatile than goods consumption, confirming the results

in Moro (2015). BOP shows a similar outcome. CLM, instead, produces a resonable 39%

for the ratio of volatilities between services and goods. Thus, in terms of both absolute and

relative volatility of sectoral consumpion, CLM is the only specification that accounts for a

substantial fraction of data statistics.

To conclude this section, consider labor volatility. Recall that the volatility of aggregate

labor is matched by construction in all models, as it is used as a target in the calibration.

Regarding sectoral labor volatility, this is 0.0363 for goods and 0.0249 for services in the

data. All models display a substantially smaller volatility of both, except BOP, which shows

a similar volatility of services as in the data. Regarding relative volatility, this is similar to

that of sectoral consumpion: in the data goods labor volatility is 46% larger than that of

services. Only CLM comes close to this with a 29% larger goods volatility (0.0135 versus

0.0105), while HRV displays similar numbers across sectors (0.0086 versus 0.0079) and BOP

shows a volatility of services which is 33% larger than that of manufacturing (0.0276 versus

21This data regularity induced researchers to investigate whether the so called “great moderation” in the
U.S. could be attributed to a structural change between goods and services. See McConnell and Perez-Quiros
(2000), Alcalá and Sancho (2004) and Moro (2012).
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Table 4: Standard deviations

pst cgt cst Ct Xt Yt ht Lgt Lst

Data 0.0249 0.0308 0.0136 0.0168 0.0520 0.0218 0.0222 0.0363 0.0249
HRV 0.0230 0.0041 0.0088 0.0069 0.0472 0.0120 0.0217 0.0086 0.0079

(0.0028) (0.0006) (0.0013) (0.0010) (0.0059) (0.0015) (0.0597) (0.0012) (0.0010)
BOP 0.0230 0.0033 0.0138 0.0107 0.0182 0.0099 0.0221 0.0207 0.0276

(0.0028) (0.0004) (0.0016) (0.0012) (0.0141) (0.0027) (0.0235) (0.0051) (0.0040)
CLM 0.0230 0.0231 0.0089 0.0043 0.0380 0.0062 0.0229 0.0135 0.0105

(0.0028) (0.0028) (0.0011) (0.0004) (0.0046) (0.0006) (0.0292) (0.0018) (0.0014)

Note: The numbers reported in the table are computed as the standard deviation of the
log-deviations of each variable from its Hodrick-Prescott filtered series . Standard deviations

across simulations are in parenthesis. Real GDP (Y ) is computed using a chain-weighted Fisher
quantity index of sectoral value added. Aggregate consumption (C) is computed using a

chain-weighted Fisher quantity index of sectoral consumptions.

0.0207).

5.2 Cyclicality

We now turn to study the cyclicality of endogenous variables. We stick to following the

convention of the RBC literature and investigate the correlation of percentage deviations

from trend of all variables with those of real GDP. These are reported in Table 5, while in

Appendix C we report all cross-correlations among endogenous variables.

In term of the cyclicality of aggregate consumption and investment, all models display a

positive correlation with GDP, as in the data. The positive correlation in the data is high

(0.90 for consumption and 0.86 for investment). HRV matches the correlation of investment

but accounts for around 63% of the correlation of consumption in the data. BOP instead,

matches almost all of the correlation of consumption, but acconts for only 48% of the corre-

lation of investment. CLM accounts for 76% of the correlation of consumption and 92% of

that of investment. Thus, all models perform reasonably well along this dimension.

In terms of sectoral consumption, both components display a high correlation with GDP,

0.73 for goods and 0.82 for services. HRV shows a correlation for goods of 0.90, thus over-

shooting the data statistic, and of 0.47 for services, thus accounting for 57% of the data.

BOP and CLM do substantially worse, as they can account for only one of the two com-

ponents. In the former, the correlation of services with GDP is almost perfectly matched,

but the model can account for only 21% of the correlation of goods. For CLM instead, the

correlation of goods is matched reasonably well (86% accounted for) while there is basically

zero correlation of services with GDP.
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Table 5: Cross-Correlation with GDP

cgt cst Ct Xt ht Lgt Lst

Data 0.7295 0.8227 0.9040 0.8619 0.8757 0.8542 0.7971
HRV 0.9041 0.4658 0.5667 0.8877 0.6516 0.4412 0.5778

(0.0286) (0.1248) (0.1052) (0.0329) (0.0819) (0.0127) (0.0109)
BOP 0.1510 0.8412 0.8467 0.4134 0.2886 0.7654 -0.0011

(0.1638) (0.1444) (0.1439) (0.3168) (0.1658) (0.1003) (0.1950)
CLM 0.6309 0.0138 0.6836 0.7852 -0.2080 0.0482 -0.2081

(0.0910) (0.1539) (0.0721) (0.0435) (0.1483) (0.1552) (0.1413)

Note: The numbers reported in the table are computed as the standard deviation of the
log-deviations of each variable from its Hodrick-Prescott filtered series. Standard deviations

across simulations are in parenthesis.

In terms of the cyclicality of aggregate labor, only HRV accounts for a reasonable fraction

of the data (74%). BOP accounts for only 33% of the correlation of labor and GDP, while

CLM displays a negative correlation of -0.21. The low and the negative correlation of labor

with GDP in BOP and CLM, respectively, helps explaining the low volatility of GDP in Table

4 for the two models. In fact, given the common production structure of all models, one can

define an aggregate production function of the economy mapping GDP to total capital and

labor used in production. Once this is defined, the volatility of total labor becomes part of

the volatility of GDP. If labor is positively correlated with GDP, its volatility would increase

GDP volatility, if it is negatively correlated, its volatility would dampen it.

HRV appears the best model also in terms of sectoral labor cyclicality, accounting for

52% of the correlation of goods labor, and 73% of the correlation of services labor with

GDP. BOP accounts for most of the correlation of goods labor, but shows no correlation of

services labor with GDP. CLM performs the worst with a correlations which is roughly zero

for goods, and negative for services.

6 Conclusions

The literature on structural transformation grew dramatically in the last two decades, with

new models that can capture well the long run shift of resources across sectors. However,

regardless of the growing use of these models in applications dealing with phenomena in the

short-term, their ability to account for basic business-cycle facts has been unexplored until

now. This paper makes a first step in this direction, comparing three workhorse models of

structural transformation among them and relating to the RBC literature.

One result is that none of these models, in their simplest version, provides a unified theory
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of growth and cycles that can be regarded as a multi-sector analogue of the one-sector growth

model. The latter is succesful in providing such a theory: given permanent TFP changes,

the model accounts well for the main growth facts; given stochastic and transitory TFP

changes the model accounts reasonably well for the main business-cycle facts. Structural

change models are extensions of the one-sector growth model that account for additional

facts of the growth process. This implies that they are also required to match a larger set

of statistics when confronted at the business cycle frequency. We show that, probably not

so unexpectedly, their ability to match these statistics is limited. Yet, our results can be

used to pick the most appropriate structural change model for the specific type of short-run

analysis needed. For instance, if a researcher is mainly interested in sectoral volatility, the

specification that provides the best account of the data is CLM. Instead, if one is mainly

interested in a setting able to reproduce the cyclicality of most components of GDP, then

HRV appears as the best choice.

We stress here that richer versions of these model can potentially improve their ability

to fit business-cycle facts. For instance Alder, Boppart, and Müller (2022) propose a class of

intertemporally aggregable (IA) preferences that nest HRV and BOP preferences as special

cases. These preferences become especially relevant to fit the data when the manufacturing

share displays an inverted U-shape over time. However, they display a substantially larger

number of parameters with respect to the other type or preferences we consider, which

provides more flexibility, but also induce a more complicated setting. Also, in CLM the

price elasticity of demand is the same for goods and services. This feature might contribute

to the poor performance of the model in some dimensions, and can potentially be amended by

resorting to a more general version of the CLM-preference structure which allows the price

elasticity of demand to be different across goods (Hanoch, 1971, Hanoch, 1975) or across

income levels (Sato, 1975). At the same time, the introduction of other type of shocks, like

demand shocks, can also potentially improve the business-cycle performance of the basic

models. We leave this exploration for future research.
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Appendix

A The restriction σ = ϵs in CLM

This section describes in detail the convenience of setting σ = ϵs, where σ affects the relative

substitution between goods and services and ϵs is related to the income elasticity of services.

We first note that not imposing this restriction produces estimates that are not statisti-

cally different from each other, and that either imposing or not this condition produces a

remarkably tight accounting of the long-run data.

To understand the role this assumption plays, consider the Euler equation in CLM:

1

β
=
rt+1 + pxt+1(1− δ)

pxt

(
1 + ΨsC

ϵs−1
t p1−σ

st

1 + ΨsC
ϵs−1
t+1 p

1−σ
st+1

) σ
1−σ
(

Ct

Ct+1

)τ
(
1 +

(
σ−ϵs
σ−1

)
ΨsC

ϵs−1
t p1−σ

st

1 +
(
σ−ϵs
σ−1

)
ΨsC

ϵs−1
t+1 p

1−σ
st+1

)
.

(6)

The Euler equation is used to determine Ct+1 in our solution algorithm. Given Ct and

Kt+1 (and hence rt+1), equation (6) determinies Ct+1 via a Bisect method. This method works

only when the function studied is strictly monotonic. Next, consider each term containing

Ct+1 in the denominator in the right hand side of equation (6):

(
1 + ΨsC

ϵs−1
t+1 p

1−σ
st+1

) σ
1−σ︸ ︷︷ ︸

A

Cτ
t+1︸︷︷︸
B

(
1 +

(
σ − ϵs
σ − 1

)
ΨsC

ϵs−1
t+1 p

1−σ
st+1

)
︸ ︷︷ ︸

C

. (7)

Term B is clearly increasing in Ct+1, and the larger the τ , the larger the derivative. Term

A is decreasing since ϵs > 1 and σ > 1. The term C is decreasing as well, since our estimates

produce σ < ϵs (although not statistically different from each other) when not constraining

σ to be equal to ϵs. This is a problem for the Bisect method. In particular, one can show

that expression (7) is increasing for relatively small values of Ct+1 and decreasing for larger

ones. Thus, the expression has an inverted U -shape as Ct+1 increases. This not only implies

a complication when using the Bisect method, but it also implies that there may be two

solutions to equation (6) when solving for Ct+1, or none at all.

Setting σ = ϵs cancels the term C, making it a constant equal to 1. This is not enough to

guarantee that expression (7) is increasing, but it does increase the value of the derivative.

A way to guarantee that term B dominates over our range of interest, so that the entire

expression is increasing, is to set τ to a relatively large value. In practice, setting τ = 3

suffices to make the expression monotonic. This allows us to solve for Ct+1 using a Bisect

method.
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B Estimating equation in CLM

This section derives equation (4). Start with the problem of minimizing expenditures given

a level of aggregate consumption:

min
cg ,cs

[cg + pscs] s.t. C =
[
Ψ1/σ

g C
ϵg−1

σ c
σ−1
σ

g +Ψ1/σ
s C

ϵs−1
σ c

σ−1
σ

s

] σ
σ−1

.

The first order conditions to this problem imply

cg = λC
1
σΨ1/σ

g C
ϵg−1

σ c
σ−1
σ

g , (8)

pscs = λC
1
σΨ1/σ

s C
ϵs−1

σ c
σ−1
σ

s , (9)

where λ is the Lagrange multiplier. Adding these two equations yields total expenditure

in consumption goods:

E = cg + pscs = λC
1
σ

[
Ψ1/σ

g C
ϵg−1

σ c
σ−1
σ

g +Ψ1/σ
s C

ϵs−1
σ c

σ−1
σ

s

]
= λC.

Thus, λ = E
C
, so that the Lagrange multiplier is the shadow price of the aggregate

consumption good. Inserting this result into equation (8) yields

cg = EσCϵg−σΨg, (10)

and ηg = Eσ−1Cϵg−σΨg, where ηg is the share of consumption spent on goods. Simplify

equations (8) and (9) to obtain

cg = λσCΨgC
ϵg−1, (11)

pscs = λσCΨsC
ϵs−1p1−σ

s , (12)

and divide equation (12) by (11) to obtain:

ηs
ηg

=
pscs
cg

=
Ψs

Ψg

Cϵs−ϵgp1−σ
s .

Taking logarithms, and noticing from equation (10) that logC = log ηg+(1−σ) logE−logΨg

ϵg−σ
we

obtain equation (4).
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C Cross-Correlations

In this Appendix we report all cross-correlations among endogenous variables. Tables 6 and

7 display the results.

Table 6: Cross-correlations 1

Ct,Xt Ct,ht ht,Xt Ct,cgt Ct,cst Xt,cgt Xt,cst cgt,cst

Data 0.5637 0.7505 0.8094 0.8694 0.9390 0.3849 0.5502 0.6617
HRV 0.1375 -0.2321 0.8817 0.4428 0.9869 0.8397 0.0228 0.3196

(0.1463) (0.1510) (0.0310) (0.1989) (0.0048) (0.0296) (0.1540) (0.1542)
BOP -0.0351 0.2771 0.0047 0.1788 0.9953 -0.0524 -0.0423 0.1254

(0.1708) (0.1627) (0.1582) (0.1681) (0.0013) (0.1767) (0.1628) (0.1705)
CLM 0.0935 -0.3527 0.0107 -0.0040 0.6691 0.8729 -0.5560 -0.7015

(0.1082) (0.1555) (0.1528) (0.1395) (0.1053) (0.0370) (0.0922) (0.0608)

Note: The numbers reported in the table are computed as the correlation of the log-deviations of
the two variables of interest from their Hodrick-Prescott filtered series. Standard deviations

across simulations in parenthesis.

Table 7: Cross-correlations 2

ht,cgt ht,cst Ct,Lst Ct,Lgt Xt,Lgt Xt,Lst ht,Lgt ht,Lst Lgt,Lst

Data 0.5543 0.7505 0.6914 0.6888 0.8381 0.7273 0.9733 0.9397 0.8497

HRV 0.5276 -0.2321 -0.2647 0.1845 0.4267 0.8501 0.5513 0.9134 0.1807
(0.0934) (0.1510) (0.1460) (0.1894) (0.1034) (0.0512) (0.1042) (0.0280) (0.1443)

BOP 0.8489 0.2771 0.0927 0.5785 0.4530 -0.1355 -0.3070 0.9433 -0.5849
(0.0533) (0.1627) (0.1730) (0.1356) (0.2680) (0.1722) (0.1633) (0.0263) (0.1111)

CLM 0.2259 -0.3527 -0.2619 -0.4083 0.4052 -0.1521 0.8976 0.9793 0.7954
(0.1615) (0.1555) (0.1503) (0.1048) (0.1318) (0.1478) (0.0326) (0.0065) (0.0598)

Note: The numbers reported in the table are computed as the correlation of the log-deviations of
the two variables of interest from their Hodrick-Prescott filtered series. Standard deviations

across simulations in parenthesis.

29


	Introduction
	Theoretical Framework
	Households
	Herrendorf, Rogerson and Valentinyi (2014)
	Boppart (2014)
	Comin, Lashkari and Mestieri (2021)

	Firms and Market Clearing
	Stochastic Processes

	Solving the models
	Deterministic Path
	Stochastic Path

	Parameter Values and Measurement
	Results
	Volatility
	Cyclicality

	Conclusions
	The restriction =s in CLM
	Estimating equation in CLM 
	Cross-Correlations
	Senza titolo



